
iSeries
OPOS Developer’s
Guide

iSeries OPOS Developers Guide
Part Number DL00461, Revision E

Released February 2007

Copyright © 2005, 2006, 2007 Ingenico. All rights reserved.

No part of this publication may be copied, distributed, stored in a retrieval system, translated into any human or com-
puter language, transmitted, in any form or by any means, without the prior written consent of Ingenico.

All trademarks, trade names, service marks, or service names owned or registered by any company and used in this
manual are the property of their respective companies.

Ingenico Inc.
6195 Shiloh Road, Suite D
Alpharetta, GA 30005
USA
Tel: 678.456.1200
Fax: 678.456.1201
www.ingenico-us.com

Ingenico Canada, Ltd.
79 Torbarrie Road
Toronto, Ontario
Canada M3L 1G5
Tel: 416.245.6700
Fax: 416.245.6701
www.ingenico.ca

Table of Contents
Chapter 1 Installation ... 1-1
OPOS Overview ..1-1
Installation ..1-2

Contents ...1-2
Connecting and Powering the Terminal ...1-3
Software Installation ...1-3
OPOS Configuration ...1-4

Designing and Testing Forms ..1-7
Using the OPOS Controls ..1-7
Setting Up the System Registry ...1-11

Chapter 2 Form Control ... 2-1
General Information ...2-1

Model ..2-1
Device Sharing ...2-1
Form Types ..2-2
Specific Events ...2-2
File System Maintenance ...2-2

Summary ...2-3
Properties ...2-3
Methods ..2-5
Events ..2-6

Properties ..2-6
CharacterSet Property R/W ..2-6
CharacterSetList Property R ..2-7
FontHeight Property R ..2-7
FontWidth Property R ...2-7
FontStyle Property R/W ..2-7
FontTypefaceList Property R ..2-8
FontTypeface Property R/W ...2-8
DeviceRows Property R ...2-8
DeviceColumns Property R ..2-9
MaximumX Property R ...2-9
MaximumY Property R ...2-9
PointArray Property R ..2-9
RawData Property R ..2-10
ResultCode Property R ..2-10
TotalPoints Property R ...2-11
KeyPadBoardPrompt1 Property R/W ...2-11
KeyPadBoardText Property R ..2-11
i

Methods ...2-12
StoreFormOnDevice Method ... 2-12
DisplayFormOnDevice Method .. 2-13
DisplayTextAt Method .. 2-14
DisplayText Method ... 2-15
QuerySignatureBoxData Method ... 2-16
QueryKeyPadBoardText Method ... 2-16
QueryRadioButtonState Method .. 2-17

Events ..2-18
DataEvent .. 2-18
ErrorEvent .. 2-18

Chapter 3 SigDisplay Control.. 3-1
General Information ...3-1
Summary ...3-1

Properties .. 3-1
Methods ... 3-2

Properties ..3-2
Get DrawBorder ... 3-2
Set DrawBorder ... 3-2
Get DrawBackground .. 3-2
Set DrawBackground ... 3-3
Get PenWidth .. 3-3
Set PenWidth ... 3-3
Get DisplayNumPoints ... 3-3
Set DisplayNumPoints ... 3-4

Methods ...3-4
SetOPOSBCNIBBLESignatureData .. 3-4
SetOPOSBCNIBBLESignatureDataX .. 3-5
SetSignatureData .. 3-5
SetSignatureDataX .. 3-6
GetSignatureType .. 3-6
GetSignatureTypeString .. 3-7
WriteSignatureToFile ... 3-7
ConvertSignatureToImageBuffer ... 3-7
EnableLiveCapture .. 3-8
StartLiveCapture .. 3-9
SetDeviceResolution ... 3-9

Chapter 4 Special Features of the iSeries Terminals................ 4-1
Function Key Tables (i3070, i6510, i6550, i6780 only) ..4-1

i3070 Key Table ... 4-2
i6000 Series Key Table .. 4-3
i6510 Additional Keys .. 4-4

Direct I/O Usage ..4-5
DirectIO Method ... 4-5
Send Raw Data Parameter .. 4-6
Clear Screen Parameter .. 4-6
Delete All Forms Parameter .. 4-6
Reset Terminal Parameter ... 4-6
iSeries OPOS Developer’s Guide -ii

Enable Key Beeps Parameter ... 4-7
Disable Key Beeps Parameter ... 4-7
Configure Key Masks Parameter ... 4-7
Set Format Specifier Parameter .. 4-8
Delete Receipt Contents Parameter .. 4-11

Contactless Card Payment (i6510, i6550, i6770, i6780)4-12
Migration from the eN-Touch 1000 ..4-12
DUKPT Key Serial Number Format ...4-13
Best Practices ..4-13

Index ... I-i
iSeries OPOS Developer’s Guide -iii

Revision History
Manual
Revision

Application
Revision

Changes

E 2.40 • The i3070 terminal is now included. All file names have been changed from
i6xxx to iSeries to reflect the inclusion of the i3070 terminal.

• The OPOS Config window has been changed to a window with multiple tabs
and new settings. The Allow Bitmap Background on Signature Form check
box was removed since it is no longer used.

• Corrected error in DUKPT Key Serial Number Format on page 4-13:
removed "0x" prefix from second number.

• Added a new section: Best Practices on page 4-13.

D 2.30 • Added i6780 terminal.

• Updated 1.2.1 Contents, added driver-only package.

• Updated Figure 3 OPOS Configuration Window.

• Added .NET description to 1.4 Using the OPOS Controls.

• Added Enable CPEM Reader and Base Slot Number to 1.5 Setting Up the
System Registry.

• Corrected Remarks section of 2.4.1 StoreFormOnDevice Method.

• Added remarks about physical keys to 2.4.2 DisplayFormOnDevice
Method. Also added cross reference to Configure Key Masks parameter.

• Added remarks about physical keys to 2.5.1 DataEvent.

• Added the following new methods:

3.4.8 ConvertSignatureToImageBuffer

3.4.9 EnableLiveCapture

3.4.10 StartLiveCapture

3.4.11 SetDeviceResolution

• Added a command to remarks section of 4.2.1 DirectIO Method.

• Added 4.2.10 Delete Receipt Contents Parameter.

• Added 4.5 DUKPT Key Serial Number Format.
iv

C 2.20 • From section 1.2.4 OPOS Configuration, updated the screenshot, removed
bullets about IBM 485 Device and Signature Format list box. Added
description of the Use CPEM Reader check box.

• From section 1.5 Setting Up the System Registry, removed the following:
485DeviceID line, SecureMSR/Ing6xxx line, SecurePINPad/Ing6xxx line,
and notes about SecureMSR and SecurePINPad.

• To section 2.1.3 Form Types, bitmaps may now be saved as .gif files.

• Changes to section 2.1.5 File System Maintenance: changed the message
command and added a second approach.

• Removed all properties and methods that were added in the previous
release, except for QueryRadioButtonState Method.

• Changed QueryKeyPadText to QueryKeyPadBoardText.
• Removed QueryKeyBoardText property.

• In section 2.4.2 DisplayFormOnDevice Method, added mention of check
boxes and radio buttons.

• In section 2.4.1 StoreFormOnDevice Method, described what to do with
alphanumeric keyboard and numeric keypad forms.

• In section 2.4.2 DisplayFormOnDevice Method, added mention of check
boxes and radio buttons.

• Removed mention of StoreFormOnDeviceEx method and
DisplayFormOnDeviceEx method.

• Removed Chapter 4, SecurePINPad Control.

• Added a new Chapter 4, Special Features of the i6000 Series Terminal

B 2.20 Added the following specific properties to Chapter 2:

• PromptMAC1 Property W

• PromptMAC2 Property W

• FormatSpecifier Property W

• FormatSpecMAC Property W

• FormFileMAC Property W

• BitmapMAC1 Property W

• BitmapMAC2 Property W

Added the following specific methods to Chapter 2:

• QueryRadioButtonState Method

• QueryCheckBoxState Method

A 2.10 Initial release.

Manual
Revision

Application
Revision

Changes
iSeries OPOS Developer’s Guide -v

 C H A P T E R 1 Installation

1.1 OPOS Overview
Object linking and embedding for retail point of sale (OPOS) is an object-based programming environ-
ment for the development of point of sale (POS) applications. OPOS allows developers to run their appli-
cations across a wide range of POS terminals and peripherals. This provides increased flexibility and
reduces the effort required to ensure cross-platform operations for POS applications developed using the
OPOS standard. OPOS reduces the cost of development usually associated with developing applications
for proprietary hardware peripherals.

Epson, NCR, and ICL Retail Systems, in conjunction with Microsoft, developed the OPOS specification.
The OPOS specification defines a set of POS device interfaces based on Microsoft’s object linking and
embedding (OLE) architecture. The OLE control architecture allows development in environments such
as Visual Basic and Visual C++, to create POS application software in a device independent manner.

In the past, developers had to create device-specific communication layers in the POS application for
each peripheral (see Figure 1, Architectural Overview, on page 1).

Figure 1 Architectural Overview

POS Application

Main application flow

Peripheral communication layer

Peripheral #2Peripheral #1 Peripheral #3
iSeries OPOS Developer’s Guide 1-1

1.2 Installation
To add a new peripheral or install another model of the same type of peripheral, the communication layer
had to be modified to support the new device. This usually meant that a new version of the entire applica-
tion had to be created.

Using OLE control architecture, POS applications communicate with a defined interface (see Figure 2,
OLE Architectural Overview). This interface remains the same even though a peripheral change
occurred.

Figure 2 OLE Architectural Overview

Because the application interface to the common control object does not change, when a new peripheral
is added or a peripheral is changed, the application does not have to change (assuming the application
supports the device type to begin with). To add a new device, simply replace the service object and the
device. The application will not know the difference.

1.2 Installation
Your OPOS Integration Kit contains all of the materials necessary for writing a Windows-based applica-
tion for an iSeries (i3070/i6510/i6550/i6770/i6780) terminal.

1.2.1 Contents

There are two options available for OPOS users. There is the complete OPOS Integration Kit, and the
driver-only package.

The OPOS Integration Kit contains the following:

• IngenicoDeviceApplication folder, which contains the UPOS Interface Application to be
installed on the terminal.

• IngenicoDocuments folder, which contains:

POS Application

Main application flow

Common control objects

Peripheral #2Peripheral #1 Peripheral #3

Service object
#1

Service object
#2

Service object
#3

OLE OLE OLE
iSeries OPOS Developer’s Guide 1-2
CHAPTER 1 Installation

1.2 Installation
— This manual

— User’s Guides for the i6500, i6770, i6780

— Installation & Operations Guides for the i3070, i6500, i6770, i6780

• IngenicoUtilities folder, which contains:

— MLDT application for downloading files to a terminal

— Form Designer application for designing terminal screens

• OPOSTestDriveApplication folder, which contains a sample Visual Basic project

The OPOS Drivers folder, which is available independent of the Integration Kit and is intended for cus-
tomers desiring the bare minimum software to deploy OPOS on a system. This package can be installed
silently and contains the following components, each of which can be installed independently:

• Windows Control Panel Configuration Utility

• Ingenico iSeries Service Object

• Ingenico implementation of the standard OPOS Controls

• Ingenico-specific controls, including Form and SigDisplay

For more information regarding silent installation and component selection, see the release notes in the
OPOS Driver package.

1.2.2 Connecting and Powering the Terminal

For information on connecting and powering up your terminal, consult the Installation and Operations
Guide included on your Integration Kit CD-ROM.

1.2.3 Software Installation

To install your OPOS Integration Kit using the attended installation:

1. Exit all open programs.

2. Open the OPOS for the Ingenico iSeries.exe file.

3. The Welcome window displays, which strongly recommends that you exit all programs before
continuing. Click Next.

4. The License Agreement window displays. Read through the agreement and if you agree, click Yes to
accept it.

5. The Choose Destination Location window displays. Click Next to accept the default directory,
C:\Program Files\Ingenico\OPOS for the Ingenico iSeries.

6. The Setup Complete window displays. Click Finish.
iSeries OPOS Developer’s Guide 1-3
CHAPTER 1 Installation

1.2 Installation
1.2.4 OPOS Configuration

To establish communication parameters and system registry entries for the terminal, run the OPOS -
Ingenico iSeries Setup Program:

1. Open Start > Programs > Ingenico > OPOS for the Ingenico iSeries > Ingenico iSeries Setup.

The Ingenico iSeries OPOS Configuration window displays.

Figure 3 OPOS Configuration Window

2. On the General tab, In the Device Connection Type list box, select the appropriate option:

• If using TCP/IP Port, specify an IP address and a port number for that IP address. The TCP/IP
setting is typically used in conjunction with a “terminal server” device. The terminal server
usually occupies one IP address and provides multiple RS-232 or RS-485 serial ports.

Note: The i3070 PIN pad does not support TCP/IP connections.

• If using Serial Port, fill in the fields as follows:

— In the Comm Port box, select the appropriate communications port.

— In the Baud Rate box, select the desired baud rate.

— In the Byte Size box, select 8.

— In the Parity box, select None.

— In the Stop Bits box, select 1.

• If using USB, select USB Device from the drop down list.

Note: The i3070 PIN pad does not support USB connections.

• Select the Enable Backlight to Power Off During Inactivity check box if desired. Use the
slider to select the amount of idle time to wait before powering off backlight (between 1 and 10
minutes).
iSeries OPOS Developer’s Guide 1-4
CHAPTER 1 Installation

1.2 Installation
3. Click the PINPad tab.

• Click the Use Form During PIN Entry check box to specify the form that you would like your
iSeries terminal to display during a PIN entry session initiated by EnablePINEntry(). This form
will be sent to the terminal when ClaimDevice() is called on the PINPad control. If you clear the
check box, OPOS will delete any existing PIN entry forms from the terminal when
ClaimDevice() is called.

• PIN Entry Timeouts: Use the sliders to specify the timeout interval, in seconds. The First Key
slider is the timeout before the first key is pressed during PIN entry. The Inter Key slider is the
timeout for any two consecutive key presses during PIN entry.

• Under Cryptographic Key Management, use the First M/S Slot list box to specify the minimum
acceptable value for the TransactionHost parameter of the PINPad control's
BeginEFTTransaction() method. By setting this parameter to 1, eN-Touch 1000 customers can
migrate to the iSeries platform without any changes to their TransactionHost parameter.

4. Click the MSR tab.

• Select the Use CPEM Reader check box if you have installed Ingenico’s contactless payment
expansion module on your terminal. This option allows you to receive swipe events from
contactless payment cards. For more information on contactless payment card usage, see Chapter
4, Special Features of the iSeries Terminals. The contactless payment expansion module,
available from your Ingenico representative, connects to your terminal's Aux port.

Note: This does not apply to the i3070 PIN pad, since the CPEM is not available for this
terminal.
iSeries OPOS Developer’s Guide 1-5
CHAPTER 1 Installation

1.2 Installation
5. Click the Signature tab.

6. Click the Form tab.

• Select the Use Form During Clear Entry check box, and then specify the form you would like
your iSeries terminal to display during a buffered entry session initiated by
QueryKeyPadBoardText(). This form will be sent to the terminal when Claim() is called on the
Form control. If you clear the check box, OPOS will delete any existing clear entry forms from
the terminal when Claim() is called.

7. Click the LineDisplay tab.

• Select the appropriate Device Model: i3070 (keypad, no signature capture), i6510 (keypad, no
signature capture), i6550 (keypad, signature capture), i6770 (signature capture with color and no
keypad), or i6780 (signature capture with color and keypad). This parameter is used to determine
which screen modes are available for the line display.

Figure 4 Device Models

• Select the desired Line Display Mode to control the number of rows (first digit) and columns
(second digit) that are available on the screen when the line display control is in use. For more
information on screen modes, refer to the Unified POS Specification, available from
http://www.nrf-arts.org/.

i6510 i6550 i6770 i6780i3070
iSeries OPOS Developer’s Guide 1-6
CHAPTER 1 Installation

http://www.nrf-arts.org/

1.3 Designing and Testing Forms
8. Click the Maintenance tab.

• To download a new application to the device, select the Download New Application check box,
then specify the entire path for the application filename and/or parameter filename. At runtime,
when the Claim() method is invoked, OPOS will determine whether the current application
and/or associated parameters match the contents of the specified file(s). If they match, no
download is performed. If they do not match, the IBM EFT protocol is used to download the new
files to the device. Note that an IBM EFT application download can take one minute or longer.
Therefore, be sure to set any Claim() timeouts accordingly.

9. Click the Debug tab.

• Select the Enable Debugging File Support check box to turn on debugging support for the
iSeries terminal. In the Debug File box, specify the path for the debugging file. All OPOS errors
will be logged to this file. To turn debugging support off, clear the check box.

1.3 Designing and Testing Forms
To design and test forms for the graphical display screens on the iSeries terminal, use the Form Designer
application. For instructions on using the Form Designer application, access the program’s online help.

1.4 Using the OPOS Controls
In order to use the ActiveX controls listed in the following tables, you must first bring them into your
development environment. This can be done in either Visual Basic, Visual C++, or .NET environment.

• To insert an OPOS control into a Visual Basic project:

— Right-click the VB Controls Toolbox, select Components, and then select the Controls
tab.

— Select the controls you would like to insert from the following table.

• To insert an OPOS control into a Visual C++ dialog:

— Right-click the dialog, and then select Insert ActiveX Control.

— Select the controls you would like to insert from the following table.

• To insert an OPOS Control into a Visual Studio .NET solution:
iSeries OPOS Developer’s Guide 1-7
CHAPTER 1 Installation

1.4 Using the OPOS Controls
— Select Tools > Add/Remove Toolbox Items > COM Components tab.

— Select the controls you would like to insert (see following table). The selected controls
become available in the Toolbox toolbar.

— Click on the toolbar to select the desired type.

— Click in your project's form to insert the control.
iSeries OPOS Developer’s Guide 1-8
CHAPTER 1 Installation

1.4 Using the OPOS Controls
Table 1.1 OPOS Controls

Control Description

OPOSLineDisplay This OPOS control allows displaying and manipulation of text on the
terminal’s display. The size of the text displayed is controlled by the registry
setting:

HKEY_LOCAL_MACHINE\Software\OLEforRetail\ServiceOPOS\LineDisplay\
Ing6XXX\DisplayMode

Valid choices for the i3070: 4x16, 4x16BOLD, and 8x21.

Valid choices for the i6510: 4x16, 4x16BOLD, and 8x21.

Valid choices for the i6550: 10x30, 10x30BOLD, 20x40.

Valid choices for the i6770: 15x40, 15x40BOLD, 30x53.

Valid choices for the i6780: 14x40, 14x40BOLD, 29x53.

Another way to set the line display is using the Ingenico iSeries OPOS
Configuration window (open Start > Programs > Ingenico > Ingenico
iSeries Toolkit > OPOS Ingenico iSeries Setup).

Note: When using the OPOS controls and Visual C++, if the LineDisplay
control is added to a project, errors will occur when the project is
compiled. The LineDisplay Common Control Object defines
CreateWindow() and DestroyWindow() methods that conflict with
member functions defined in the control’s base class (CWnd). To
avoid these errors, edit the source files (.cpp and .h) created by
adding the LineDisplay control and modify the names of the two
methods. In the project, reference these LineDisplay methods with
the modified names.

OPOSSigCap (i6550, i6770, i6780 only) This is an OPOS control that allows an application
to retrieve a signature from the terminal. This control is provided for users
who wish to migrate from other OPOS SigCap applications to the terminal.
New application development should use the OPOS form control,
OPOSIVICMForm.

The behavior of this control is highly dependent on the string parameter that
is passed to the BeginCapture() method.

• If the string is not NULL, an attempt is made to match this string with
the name of a registry value located under the OPOS
SignatureCapture hive. If the match fails, the control returns
OPOS_E_NOEXIST.

• If the string is NULL, a default form is provided during signature
capture.

If the match succeeds, the control uses the matching registry value's type to
determine the next step.

• If the value is of type REG_DWORD, this value is interpreted as the
number of the form to display during signature capture. This form
must have been previously stored by the Form control with a form
number that matches this value.

• If the value is of type REG_SZ, the value is interpreted as the path
to a file which contains the desired form information. This form is
sent to the device and the signature capture process is begun.

• If the value is of type REG_BINARY, it is interpreted as raw binary
form data to be sent directly to the device prior to capturing the
signature.
iSeries OPOS Developer’s Guide 1-9
CHAPTER 1 Installation

1.4 Using the OPOS Controls
For instructions on how to use and format these controls, see the following chapters.

ENFormSigDisplay This control is used to render a signature on your PC or electronic cash
register. This control will display an OPOS signature returned from the
SigCap control or the form control, IVICMForm. This control will accept
signatures in any of the three OPOS formats and either of the two Ingenico
terminal native formats.

To use the ENFormSigDisplay, call one of the following two methods to set
the binary option:

• SetOPOSBCNIBBLESignatureData(PointArray) – If the property
BinaryConversion is set to OPOS_BC_NIBBLE, this function can be
called with the data contained in the property PointArray. THIS
METHOD WILL ONLY WORK IF THE OPOS BINARY
CONVERSION IS SET TO OPOS_BC_NIBBLE.

• SetSignatureData(RawDataVariant) – The data in the property
RawData or PointArray must first be placed in a variant data
structure. The variant containing the signature data is passed in to
this function.

The ENFormSigDisplay has other properties for Border, PenWidth,
Background, etc. This ActiveX control is printable from containers that
support printing.

OPOSIVICMForm
(Ingenico Form OPOS
Extension)

This is a form control used to store and display forms created with the Form
Designer. For the i6550/i6770/i6780 touch screen terminal, this control
provides button events to the application, provides survey responses, and is
an exact superset of the OPOSSigCap control.

OPOSMSR This is an OPOS control that allows an application to get magnetic stripe
information from a credit or debit card via the magnetic stripe reader (MSR).

OPOSPINPad This is an OPOS control that allows an application to manage keys,
compute MAC values, get an encrypted PIN block from the secure PIN
entry screen.

Table 1.1 OPOS Controls (Continued)

Control Description
iSeries OPOS Developer’s Guide 1-10
CHAPTER 1 Installation

1.5 Setting Up the System Registry
1.5 Setting Up the System Registry
OPOS relies on the system registry for proper operation. Each OPOS device has associated registry
entries. The OPOS Application Developer’s Guide, included in this software development kit, describes
the necessary registry entries.

All OPOS registry settings are located under:

HKEY_LOCAL_MACHINE\SOFTWARE\OLEforRetail\ServiceOPOS

and are further subdivided by OPOS class type. The following is a listing of Ingenico’s registry settings
for each device.

All OPOS controls will have the following two entries that describe the associated device and service
object version.

Description "Ingenico iSeries"
Version "Version versionNumber"

The SignatureCapture key contains configuration entries for the iSeries OPOS controls as a whole:

SignatureCapture\Ing6XXX OPOS.SigCap.SO.Ing6XXX

OverlaySigFormOnBackground 0x00000001
Port “COM1”
BaudRate 0x00004b00
ByteSize 0x00000008
Parity 0x00000000
StopBits 0x00000000
ConnectType “Serial Port”
IPAddress “10.1.1.5”
IPPort 0x00001f41
UseDebugFile 0x00000001
DebugFile “C:\\Ing6XXXSO Com1.DBG”
NewAppFileName "C:\temp\eftl0600"

(optional)
NewParmFileName "C:\temp\eftp0600"

(optional)

IBM EFT Executable "C:\Program Files\Ingenico\OPOS for
the Ingenico 6XXX\ibmeftdl.exe"
(optional)

IVICMForm\Ing6XXX OPOS.IVICMForm.SO.Ing6XXX

ClearEntryForm "c:\clrentry.icg"
UseClearEntryForm 0x00000000

MSR\Ing6XXX OPOS.MSR.SO.Ing6XXX

Enable CPEM Reader 0x00000000

PINPad\Ing6XXX OPOS.PINPad.SO.Ing6XXX
iSeries OPOS Developer’s Guide 1-11
CHAPTER 1 Installation

1.5 Setting Up the System Registry
First Key Timeout 0x0000000F
Inter Key Timeout 0x0000000F
FormFile "c:\pinentry.icg"
UseFormFile 0x00000000

Base Slot Number 0x00000000

LineDisplay\Ing6XXX OPOS.LineDisplay.SO.Ing6XXX

DeviceWindows “10”
DeviceModel "6550"
DisplayMode “10x30”

The detail of the SignatureCapture entry in the System Registry holds all the connection detail for these
terminals. The registry entries for each device are modified through the control panel applet for the termi-
nal. These settings are accessed when you call:

• SigCap.Open(“Ing6XXX”)

• MSR.Open(“Ing6XXX”)

• PINPad.Open(“Ing6XXX”)

• LineDisplay.Open(“Ing6XXX”)

• IVICMForm.Open(“Ing6XXX”)

To access multiple devices from a single host, simply duplicate the above registry entries with a new
device name. For example, a hotel may have registry entries for Ing6XXX-CheckIn and
Ing6XXX-CheckOut. The hotel’s registry entries would be as follows:

SignatureCapture\Ing6XXX-CheckIn
IVICMForm\Ing6XXX-CheckIn
MSR\Ing6XXXIng6XXX-CheckIn
PINPad\Ing6XXX-CheckIn
LineDisplay\Ing6XXX-CheckIn

SignatureCapture\Ing6XXX-CheckOut
IVICMForm\Ing6XXX-CheckOut
MSR\Ing6XXX-CheckOut
PINPad\Ing6XXX-CheckOut
LineDisplay\Ing6XXX-CheckOut

With these registry settings, you can now uniquely access multiple devices from one host device. To do
this, specify the new name in the open member function (SigCap.Open(“Ing6XXX-CheckIn”) or
MSR.Open(“Ing6XXX.Check-Out”).
iSeries OPOS Developer’s Guide 1-12
CHAPTER 1 Installation

 C H A P T E R 2 Form Control

2.1 General Information
Ingenico’s form control, IVICMForm.ocx, is not a standard OPOS control, but rather an extension to the
OPOS specifications that was written to allow form-based display and control on the iSeries terminal.
The Ingenico form control’s OLE programmatic ID is OPOS.IVICMForm. With respect to common
properties and methods, Ingenico form control follows the version 1.3 specifications for OPOS controls
exactly.

The registry entries for the Ingenico form control are located at:

HKEY_LOCAL_MACHINE\Software\OLEforRetail\ServiceOPOS\IVICMForm\In
g6XXX

2.1.1 Model

The general model of Ingenico form control:

• Consists of a form download and display mechanism for rendering and controlling forms on the
iSeries terminal.

• Is directly tied to the Form Designer, a PC-based form generation tool with a graphical user
interface that is included on the OPOS Software Development Kit CD-ROM. This tool allows
you to generate forms and save them on the disk drive for download and future editing.

• Consists of a subset of OPOS Line Display primitives for the display of dynamic text on top of
forms. This functionality is necessary because the OPOS Line Display does not allow multiple
fonts during display.

2.1.2 Device Sharing

The Ingenico form control is an exclusive-use device. Its device sharing rules are:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing properties or calling methods
that update the device.

• For precise usage prerequisites, see section 2.2 Summary on page 2-3.
iSeries OPOS Developer’s Guide 2-1

2.1 General Information
2.1.3 Form Types

Developers can create non-data entry forms for the iSeries terminal, such as select payment type screens,
signature capture screens, line item displays, and advertising screens.

The Form Designer automatically saves a form generated for iSeries terminals as an Ingenico Custom
Graphic (.icg or “text” file). The bitmap on the form must be saved separately using the .bmp or .gif
extension.

2.1.4 Specific Events

DataEvents are fired under the following circumstances:

• When a user activates a button on the currently displayed form.

• When signature data is ready for retrieval.

• When you call QuerySignatureBoxData and signature data is successfully retrieved.

2.1.5 File System Maintenance

In order to prevent iSeries terminals from becoming fragmented and running out of file memory, it is
important to delete all existing forms before storing new or updated forms on the device. There are cur-
rently two methods to achieve this. The first way is to send the device a five-byte message via the Direc-
tIO command DIO_SEND_RAW_DATA, as follows:

\x05\x05\x93\xFF\x6C

and wait for a successful response.

The second, and preferred, approach, is to have OPOS send this message on your behalf using the Direc-
tIO command DIO_DELETE_ALL_FORMS. For information regarding DirectIO Commands, see sec-
tion 4.2 Direct I/O Usage on page 4.5.

To ensure these bytes are transmitted correctly to the OPOS
Control, be sure to set the control's BinaryConversion property
to either OPOS_BC_NIBBLE or OPOS_BC_DECIMAL.
For more information regarding the BinaryConversion property,
consult the OPOS Application Developer's Guide.

!

iSeries OPOS Developer’s Guide 2-2
CHAPTER 2 Form Control

2.2 Summary
2.2 Summary
This section contains precise usage prerequisites for each property and method.

2.2.1 Properties

Table 2.1 Common Properties

Name Type Access Initialized After

AutoDisable Boolean R/W Open

BinaryConversion Long R/W Open

CheckHealthText String R Open

Claim Boolean R Open

DataCount Long R Open

DataEventEnabled Boolean R/W Open

DeviceEnabled Boolean R/W Open, Claim

FreezeEvents Boolean R/W Open

OutputID Long R Open, Claim

ResultCode Long R --

ResultCodeExtended Long R Open

State Long R --

ControlObjectDescription String R --

ControlObjectVersion Long R --

ServiceObjectDescription String R Open

ServiceObjectVersion Long R Open

DeviceDescription String R Open

DeviceName String R Open
iSeries OPOS Developer’s Guide 2-3
CHAPTER 2 Form Control

2.2 Summary
Table 2.2 Specific Properties

Name Type Access Initialized After

CharacterSet Long R/W Open, Claim, Enable

CharacterSetList String R Open

FontHeight Long R Open

FontWidth Long R Open

FontStyle Long R/W Open, Claim, Enable

FontTypefaceList String R Open

FontTypeface Long R/W Open, Claim, Enable

DeviceRows Long R Open

DeviceColumns Long R Open

MaximumX Long R Open

MaximumY Long R Open

RawData String R Open, Claim, Enable

TotalPoints Long R Open, Claim, Enable

PointArray String R Open, Claim, Enable

KeyPadBoardPrompt1 String R/W Open, Claim, Enable

KeyPadBoardText String R Open, Claim, Enable
iSeries OPOS Developer’s Guide 2-4
CHAPTER 2 Form Control

2.2 Summary
2.2.2 Methods

Note: Those migrating from the eN-Touch 1000 may notice that QueryScriptBoxData is not
applicable to iSeries terminals. This is because it does not use script (or initial) boxes.

Table 2.3 Common Methods

Name May Use After

Open --

Close Open

Claim Open

Release Open, Claim

CheckHealth Open, Claim, Enable

ClearInput Open, Claim, Enable

ClearOutput Open, Claim, Enable

DirectIO Open

Table 2.4 Specific Methods

Name May Use After

StoreFormOnDevice Open, Claim, Enable

DisplayFormOnDevice Open, Claim, Enable

DisplayTextAt Open, Claim, Enable

DisplayText Open, Claim, Enable

QuerySignatureBoxData Open, Claim, Enable

QueryKeyPadBoardText Open, Claim, Enable

QueryRadioButtonState Open, Claim, Enable
iSeries OPOS Developer’s Guide 2-5
CHAPTER 2 Form Control

2.3 Properties
2.2.3 Events

2.3 Properties

2.3.1 CharacterSet Property R/W

Syntax LONG CharacterSet;

Remarks CharacterSet contains the character set for displaying characters.

Possible ranges or values:

Value Definition
Range 101 - 199 A device-specific character set that does not match a code

page, nor the ASCII or Windows ANSI character sets.

Range 400 - 990 Windows Code page; matches one of the standard values.

FORM_CS_ASCII The ASCII character set, supporting the ASCII characters
between 20-hex and 7F-hex. The value of this constant is
998.

FORM_CS_WINDOWS The Windows ANSI character set. The value of this constant
is 999. This is exactly equivalent to the Windows code page
1252.

Range 1000 and higher Windows code page; matches one of the standard values.

This property is initialized to an appropriate value when the device is first enabled
following the Open method.

Return When this property is set, one of the following values is placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS The property was set successfully.
Other Values See 2.3.14 ResultCode Property R.

See Also 2.3.2 CharacterSetList Property R

Table 2.5 Events

Name May Occur After

DataEvent Open, Claim, Enable

DirectIOEvent Open

ErrorEvent Open

StatusUpdateEvent Open, Claim, Enable
iSeries OPOS Developer’s Guide 2-6
CHAPTER 2 Form Control

2.3 Properties
2.3.2 CharacterSetList Property R

Syntax BSTR CharacterSetList;
Remarks CharacterSetList is a string of character set numbers.

This property is initialized by the Open method. The string consists of ASCII numeric set
numbers separated by commas.

For example, if the string is 101,850,999, then the device supports a device-specific
character set, code page 850, and the Windows ANSI character set.

See Also 2.3.1 CharacterSet Property R/W

2.3.3 FontHeight Property R

Syntax LONG FontHeight;

Remarks FontHeight returns the height of the currently selected font, in pixels.

This property is initialized by the Open method.

See Also 2.3.4 FontWidth Property R
2.3.5 FontStyle Property R/W

2.3.4 FontWidth Property R

Syntax LONG FontWidth;

Remarks FontWidth returns the width of the currently selected font, in pixels.

This property is initialized by the Open method.

See Also 2.3.3 FontHeight Property R
2.3.5 FontStyle Property R/W

2.3.5 FontStyle Property R/W

Syntax LONG FontStyle;

Remarks FontStyle sets/returns the style of the currently selected font.

This property is initialized by the Open method. The style can be any combination (bitwise
OR) of the following: underline and reverse. The numeric values are:

• Underline is 0x02
• Reverse is 0x04

See Also 2.3.3 FontHeight Property R
2.3.4 FontWidth Property R
iSeries OPOS Developer’s Guide 2-7
CHAPTER 2 Form Control

2.3 Properties
2.3.6 FontTypefaceList Property R

Syntax BSTR FontTypefaceList;

Remarks FontTypefaceList specifies the typefaces (e.g., bold) and/or fonts (e.g., Arial) that are
supported by the device.

This property is initialized by the Open method. The string consists of font or typeface
names separated by commas.

8x16, 8x16BOLD, 6x8 are the default typefaces supported by the device.

See Also 2.3.8 DeviceRows Property R

2.3.7 FontTypeface Property R/W

Syntax LONG FontTypeface;

Remarks FontTypeface is an index into the comma-separated list of typefaces allowed by this
device.

With 8x16, 8x16BOLD, 6x8 as the FontTypefaceList, values of the identifiers are set
according to the following table.

This property is initialized by the Open method.

2.3.8 DeviceRows Property R

Syntax LONG DeviceRows;

Remarks DeviceRows contains the number of rows on the terminal’s display screen. This value is
dependent on the current FontTypeface and the dimensions of the pixel display, which are:

• 128 x 64 for the i3070 terminal
• 128 x 64 for the i6510 terminal
• 240 x 160 for the i6550 terminal
• 320 x 240 for the i6770 terminal
• 320 x 234 for the i6780 terminal

This property is initialized by the Open method.

FontTypeface Identifier Associated Font

0 8x16

1 8x16 BOLD

2 6x8
iSeries OPOS Developer’s Guide 2-8
CHAPTER 2 Form Control

2.3 Properties
2.3.9 DeviceColumns Property R

Syntax LONG DeviceColumns;

Remarks DeviceColumns contains the number of columns on the terminal’s display screen. This
value is dependent on the current FontTypeface and the dimensions of the pixel display,
which are:

• 128 x 64 for the i3070 terminal
• 128 x 64 for the i6510 terminal
• 240 x 160 for the i6550 terminal
• 320 x 240 for the i6770 terminal
• 320 x 234 for the i6780 terminal

This property is initialized by the Open method.

2.3.10 MaximumX Property R

Syntax LONG MaximumX;

Remarks MaximumX contains the maximum horizontal coordinate of the terminal’s display screen.

This property is initialized by the Open method.

2.3.11 MaximumY Property R

Syntax LONG MaximumY;

Remarks MaximumY contains the maximum vertical coordinate of the terminal’s display screen.

This property is initialized by the Open method.

2.3.12 PointArray Property R

Syntax BSTR PointArray;

Remarks PointArray contains the signature captured from the device. It consists of an array of
xy-coordinate points with the number of array entries specified in TotalPoints. Each point
is represented by four characters: x (low 8 bits), x (high 8 bits), y (low 8 bits), y (high 8 bits).
The format of this data depends upon the value of the BinaryConversion property (for
more information, refer to the Unified POS Specification, available from
http://www.nrf-arts.org/).

A special point value is (0xFFFF, 0xFFFF) which indicates the end of a line (that is, a pen
lift). Almost all signatures are comprised of more than one line.

• If the RealTimeDataEnabled property is FALSE, then PointArray contains the
entire captured signature.

• If the RealTimeDataEnabled property is TRUE, then PointArray contains at least
one point of the signature. The actual number of points delivered at one time is
implementation dependent. The points from multiple DataEvents are logically
concatenated to form the entire signature, such that the last point from a DataEvent
is followed immediately by the first point of the next DataEvent.

The point representation definition is the same regardless of whether the signature is
presented as a single PointArray, or as a series of real time PointArrays.
iSeries OPOS Developer’s Guide 2-9
CHAPTER 2 Form Control

http://www.nrf-arts.org/

2.3 Properties
Reconstruction of the signature using the points is accomplished by beginning a line from
the first point in the signature to the second point, then to the third, and so on. When an
end-of-line point is encountered, the drawing of the line ends, and the next line is drawn
beginning with the next point. An end-of-line point is assumed (but need not be present in
PointArray) at the end of the signature.

This property can be set by:

• The control just before delivering the DataEvent
• The EndCapture method

See Also 2.3.13 RawData Property R

2.3.13 RawData Property R

Syntax BSTR RawData;

Remarks RawData contains the signature captured from an iSeries terminal in a device-specific
format. The format of this data depends upon the value of the BinaryConversion property
(for more information, refer to the Unified POS Specification, available from
http://www.nrf-arts.org/).

This data is often in a compressed form to minimize signature storage requirements.
Reconstruction of the signature from this data requires device-specific processing.

This property can be set by:

• The control just before delivering the DataEvent
• The EndCapture method

See Also 2.3.12 PointArray Property R
2.3.15 TotalPoints Property R

2.3.14 ResultCode Property R

Syntax LONG ResultCode;

Remarks Each method and writable property sets its own ResultCode. ResultCode is always
readable.

Before the Open method is called, it returns the value OPOS_E_CLOSED.

It is conceivable that more than one of the result codes in the following list could be
validated for a particular failure. The order of error reporting precedence for such scenarios
is the following:

• OPOS_E_CLAIMED
• OPOS_E_NOTCLAIMED
• OPOS_E_DISABLED

The result code values are:

Value Meaning
OPOS_SUCCESS Successful operation.
OPOS_E_CLOSED Attempt was made to access a closed device.
iSeries OPOS Developer’s Guide 2-10
CHAPTER 2 Form Control

http://www.nrf-arts.org/

2.3 Properties
OPOS_E_CLAIMED Attempt was made to access a device that is claimed by
another process. The other process must release the device
before this access may be made. For exclusive-use devices,
the application will also need to claim the device before the
access is legal.

OPOS_E_NOTCLAIMED Attempt was made to access an exclusive-use device that
must be claimed before the method or property set action can
be used. If the device is already claimed by another process,
then the status OPOS_E_CLAIMED is returned instead.

OPOS_E_NOSERVICE The control cannot communicate with the Service Object.
Most likely, a setup or configuration error must be corrected.

OPOS_E_DISABLED Cannot perform operation while device is disabled.

2.3.15 TotalPoints Property R

Syntax LONG TotalPoints;

Remarks Contains the number of signature points in PointArray.

If RealTimeDataEnabled is TRUE, then TotalPoints is set to zero to indicate that all of
the partial signatures have been provided to the application by the control.

This property is set by the control just before delivering the DataEvent or by the
EndCapture method. It includes the line drawing terminators (see 2.3.12 PointArray
Property R).

2.3.16 KeyPadBoardPrompt1 Property R/W

Syntax BSTR KeyPadBoardPrompt1;

Remarks KeyPadBoardPrompt contains the onscreen prompt that is displayed when the user
begins a clear entry session. A clear entry session is initiated by a call to
QueryKeyPadBoardText().

Note: KeyPadBoardPrompt2 exists in the application, but cannot be used by an iSeries
terminal because it only permits one string when specifying a prompt for PIN
entry.

2.3.17 KeyPadBoardText Property R

Syntax BSTR KeyPadBoardText;

Remarks KeyPadBoardText contains the text entered by the user during a clear entry session. The
form control will fire a DataEvent with a status of zero (0) for successfully entered text,
or a status of negative one (-1) for a user cancellation.
iSeries OPOS Developer’s Guide 2-11
CHAPTER 2 Form Control

2.4 Methods
2.4 Methods

2.4.1 StoreFormOnDevice Method

Syntax LONG StoreFormOnDevice(LONG formNumber, LPCTSTR formFile)

Parameter Description
formNumber A numeric identifier for referencing this form in the future

with DisplayForm(), and for identifying this form during
DataEvents. formNumber must be a numeric identifier in
the range of 1 to 255.

A value of zero will use the form number defined in the
formFile.

formFile A relative path that includes the form file name. Form files
for use with the Ingenico form control are generated by the
Form Designer.

Remarks StoreFormOnDevice writes a form and its corresponding background image to the
device's FLASH memory for later instant recall. It is important to note that a form may be
as simple as a bitmap advertisement screen, or as complex as a bitmap with corresponding
sensitive areas that generate a button event upon user activation. A form may also contain
radio buttons and signature boxes.

Return One of the following values is returned by the method and placed in the ResultCode
property:

Value Meaning
OPOS_SUCCESS The method was successful.
OPOS_E_FAILURE The method was not successful
Other Values See 2.3.14 ResultCode Property R.

See Also 2.4.2 DisplayFormOnDevice Method

WARNING
In order to prevent the iSeries terminal from running out of file
memory due to fragmentation, it is important to delete all
existing forms before storing new or updated forms on the
device. Be careful to only store a form if an update is necessary.
For more details, see 2.1.5 File System Maintenance on page 2-2.

!

iSeries OPOS Developer’s Guide 2-12
CHAPTER 2 Form Control

2.4 Methods
2.4.2 DisplayFormOnDevice Method

Syntax LONG DisplayFormOnDevice(LONG formNumber, LPCTSTR formFile)

Parameter Description
formNumber A numeric identifier for referencing this form in the future

with DisplayForm(), and for identifying this form during
DataEvents. formNumber must be a numeric identifier in
the range of 1 to 255.

A value of zero will use the form number defined in the
formFile.

formFile A relative (to the application) path (plus extension) to a form
file. Form files for use with the Ingenico form control are
generated by the Form Designer.

Remarks The OPOSIVICMForm control fires a DataEvent when one of the action buttons on the
form has been activated by the user. Other types of buttons, such as radio buttons and check
boxes, do not result in a DataEvent being fired. The Status member of the DataEvent will
contain the button's identifier. Because forms may contain radio buttons, check boxes, and
signature boxes, it is the application's responsibility to query the status of the individual
form members. This should be done after a DataEvent has been fired.

The form must be stored on the device and the correct form number must be specified. If a
form is currently displayed on the device, subsequent behavior is subject to whether the
new form is transparent. If it is transparent, the screen is not cleared and the new form is
overlaid on top of the original form. This is often used with graphics. If it is not transparent,
the screen is cleared and the new form takes its place. For more information regarding form
transparency, see the Form Designer application’s online help.

If a form does not contain any buttons, the behavior of the terminal's physical keys are not
affected. However, if a form contains one or more buttons, then the terminal's physical keys
are automatically enabled, subject to the current keymask setting. Furthermore,
DataEvents are enqueued for physical buttons just as they are for buttons on a form. For
example, if the physical Cancel key is pressed and that key is not currently masked, a
DataEvent will be enqueued, even if the form does not contain a button with an ID
corresponding to Cancel. If in fact the form does contain a Cancel button, there is no way
to distinguish whether the physical or virtual button was pressed.

Return One of the following values is returned by the method and placed in the ResultCode
property:

Value Meaning
OPOS_SUCCESS The method was successful.
OPOS_E_FAILURE The method was not successful.
Other Values See 2.3.14 ResultCode Property R.

See Also 2.4.1 StoreFormOnDevice Method
2.4.5 QuerySignatureBoxData Method

2.4.6 QueryKeyPadBoardText Method

2.4.7 QueryRadioButtonState Method

2.5.1 DataEvent

4.2.8 Configure Key Masks Parameter
iSeries OPOS Developer’s Guide 2-13
CHAPTER 2 Form Control

2.4 Methods
2.4.3 DisplayTextAt Method

Syntax LONG DisplayTextAt (LONG Row, LONG Column, BSTR Data, LONG Attribute)

Parameter Description
Row The start row for the text.

Column The start column for the text.

Data The string of characters to display.
The format of this data depends upon the value of the
BinaryConversion property (for more information, refer to
the Unified POS Specification, available from
http://www.nrf-arts.org/).

Attribute This parameter is included for compatibility with OPOS
LineDisplay. This parameter is ignored.

Remarks The characters in Data are processed beginning at the screen/form location specified by the
Row and Column parameters, and continuing in succeeding columns. When the limit of the
screen has been reached, characters are continued on the next row beginning at Column 0.
Special characters are allowed in Data, CarriageReturn (0x0D) returns the current Column
to 0, and LineFeed (0x0A) increments the current Row and returns Column to 0.

Screen coordinates use the format (Row,Column) and start at (0,0) in the upper left hand
corner and extend to the lower right hand corner (DeviceRows-1, DeviceColumns-1).

Return One of the following values is returned by the method and placed in the ResultCode
property:

Value Meaning
OPOS_SUCCESS The method was successful.
OPOS_E_ILLEGAL Row or Column are out of range
Other Values See 2.3.14 ResultCode Property R

See Also 2.3.8 DeviceRows Property R
2.3.9 DeviceColumns Property R
2.3.7 FontTypeface Property R/W
iSeries OPOS Developer’s Guide 2-14
CHAPTER 2 Form Control

http://www.nrf-arts.org/

2.4 Methods
2.4.4 DisplayText Method

Syntax LONG DisplayText (BSTR Data, LONG Attribute)

Parameter Description
Data The string of characters to display. The format of this data

depends upon the value of the BinaryConversion property
(for more information, refer to the Unified POS
Specification, available from http://www.nrf-arts.org/).

Attribute This parameter is included for compatibility with OPOS
LineDisplay. This parameter is ignored.

Remarks This method is used to send text to a scrolling receipt element on a form. For more
information on how to configure the behavior and appearance of scrolling receipts and
other form elements, see the online help for the Ingenico Form Designer application.

The characters in Data are displayed at the current cursor position. The cursor's position
starts at the origin, and advances as text is printed. The location of the origin depends on
whether a scrolling receipt element in onscreen when DisplayText is called.

• If a scrolling receipt element is onscreen when DisplayText is called, the origin is
located at the upper left corner of the scrolling receipt element.

• If there is no scrolling receipt element when DisplayText is called, the origin is
located at the upper left corner of the screen.

Using the format (Row, Column), screen coordinates start at the origin (0, 0) and extend to
the lower right corner (DeviceRows-1, DeviceColumns-1). The appearance of the text is
dictated by the FontStyle and FontTypeface properties.

Special characters are allowed in Data:

• CarriageReturn (0x0D) returns the cursor to the leftmost column of the screen or
scrolling receipt.

• LineFeed (0x0A) moves the cursor down one row before moving it to the leftmost
column.

If the cursor reaches the bottom of the screen or the bottom of the scrolling receipt element,
the text will automatically scroll upwards, and the first line of text will be lost.

Return One of the following values is returned by the method and placed in the ResultCode
property:

Value Meaning
OPOS_SUCCESS The method was successful.
Other Values See 2.3.14 ResultCode Property R.

See Also 2.3.8 DeviceRows Property R
2.3.9 DeviceColumns Property R
2.3.5 FontStyle Property R/W
2.3.7 FontTypeface Property R/W
iSeries OPOS Developer’s Guide 2-15
CHAPTER 2 Form Control

http://www.nrf-arts.org/

2.4 Methods
2.4.5 QuerySignatureBoxData Method

Syntax LONG QuerySignatureBoxData()

Parameter Description
none This method call requires no parameters.

Remarks QuerySignatureBoxData may be called to terminate the displayed form or after a control
button DataEvent. Once a DataEvent has been fired to the application, the stylus is
disabled, and the form is no longer available for user modification. At this point, the status
of form objects may be queried.

If QuerySignatureBoxData returns OPOS_SUCCESS, then the application may reliably
read RawData, TotalPoints, and PointArray for the signature box contained on the form.
RawData, TotalPoints, and PointArray will contain no data if the user has not signed in
this signature box.

Return One of the following values is returned by the method and placed in the ResultCode
property:

Value Meaning
OPOS_SUCCESS The method was successful.
OPOS_E_FAILURE No data is available for the signature box.
Other Values See 2.3.14 ResultCode Property R.

See Also 2.4.2 DisplayFormOnDevice Method
2.5.1 DataEvent

2.4.6 QueryKeyPadBoardText Method

Syntax LONG QueryKeyPadBoardText ()

This method call requires no parameters.

Remarks This method behaves differently for the i6510, i6550, and i6780, which have physical
keypads, and the i6770, which does not.

• i6780/i6550/i6510/i3070: The QueryKeyPadBoardText method initiates a clear
entry session, in which the user may enter unencrypted numeric data using the
physical PIN pad. Once the user has submitted this data, the Form Control shall fire
a DataEvent with a status of zero (0) for successfully entered text, or a status of
negative one (-1) for a user cancellation. The resultant numeric data is stored in the
KeyPadBoardText property.

• i6770: Since the i6770 device does not possess physical keys, a call to
QueryKeyPadBoardText must be preceded by a call to display either a numeric
keypad or an alphanumeric keyboard on the device. This is achieved via the
DisplayFormOnDevice method, which is passed a number corresponding to a form
containing the desired key-entry element. Once the user has submitted this data, the
Form Control shall fire a DataEvent with a status of zero (0) for successfully entered
text, or a status of negative one (-1) for a user cancellation. The resultant numeric or
alphanumeric data is stored in the KeyPadBoardText property.

The look and feel of the virtual keypad and keyboard is not subject to configuration.
For more information about these and other form elements, refer to the online help
in the Ingenico Form Designer application.
iSeries OPOS Developer’s Guide 2-16
CHAPTER 2 Form Control

2.4 Methods
Return One of the following values is returned by the method and placed in the ResultCode
property:

Value Meaning
OPOS_SUCCESS The clear entry session was started successfully.
OPOS_E_ILLEGAL There was an error during initiation of the clear entry

session.
Other Values See 2.3.14 ResultCode Property R.

See Also 2.4.2 DisplayFormOnDevice Method
2.5.1 DataEvent

2.4.7 QueryRadioButtonState Method

Syntax LONG QueryRadioButtonState(LONG groupID, LONG controlID, LONG *
controlState)

Parameter Description
groupID The group identifier for the button whose state is being

sought. If this value is nonzero, the button is assumed to be
a radio button. Otherwise, the button is assumed to be a
check box.

controlID An identifier that uniquely identifies the button whose state
is being sought.

controlState A pointer to a LONG which will hold the returned state of
the button. A value of one (1) indicates the button is in the
pressed state. A value of zero (0) indicates the button is not
currently pressed.

Remarks Applications should call QueryRadioButtonState after they have received a DataEvent
indicating a successful button press. A call to QueryRadioButtonState causes the stylus
to be disabled so that the form is no longer subject to user modification. A separate call to
QueryRadioButtonState is needed for each check box on a form whose state is to be
determined. On the other hand, the state of all radio buttons in a group can be inferred once
the identity of the pressed button in the group is known.

Customers migrating from the eN-Touch 1000 will notice a few minor changes with respect
to radio button and check box behavior:

• All button types on the eN-Touch 1000 were allocated independent sets of IDs; for
example, a radio button could have the same ID as a checkbox or a regular button.
For Ingenico iSeries devices, all buttons, be they check boxes, radio buttons, or
regular buttons, must have a unique ID. The Ingenico Form Designer application
automatically enforces these differences.

• On the eN-Touch 1000, receipt of a DataEvent caused the stylus to be disabled. For
i6500/i6700 devices, the stylus is not disabled until QueryRadioButtonState is
called.

Radio buttons and check boxes are best used on a form in conjunction with regular buttons.
For more information on designing forms with radio buttons and checkboxes, see the
online help for the Ingenico Form Designer application.

Return One of the following values is returned by the method and placed in the ResultCode
property:
iSeries OPOS Developer’s Guide 2-17
CHAPTER 2 Form Control

2.5 Events
Value Meaning
OPOS_SUCCESS The method was successful.
OPOS_E_ILLEGAL The device has not yet received a control button event.
Other Values See 2.3.14 ResultCode Property R.

See Also 2.4.2 DisplayFormOnDevice Method
2.5.1 DataEvent

2.5 Events

2.5.1 DataEvent

Syntax void DataEvent (LONG Status);

Remarks Fired to signal input data from the device to the application.

This event is fired in the following situations:

• When the user presses any one of a form's buttons
• When the user presses a physical button while a form with buttons is displayed
• When signature data is available

A value of zero in the status parameter indicates signature box data. Otherwise the Status
parameter contains the button ID of the control button pressed on the currently active form.

See Also 2.4.5 QuerySignatureBoxData Method
2.4.6 QueryKeyPadBoardText Method
2.4.7 QueryRadioButtonState Method

2.5.2 ErrorEvent

Syntax void ErrorEvent (LONG ResultCode, LONG ResultCodeExtended,
LONG ErrorLocus, LONG* pErrorResponse);

Parameter Description
ResultCode Result code causing the error event. For values, see section

2.3.14 ResultCode Property R.

ResultCodeExtended Extended result code causing the error event. For values, see
ResultCodeExtended.

ErrorLocus Location of the error. See values below.

pErrorResponse Pointer to the error event response. See values below.

The ErrorLocus parameter may be one of the following:

Value Meaning
OPOS_EL_INPUT Error occurred while gathering or processing event-driven

input. No input data is available.

OPOS_EL_INPUT_DATA Error occurred while gathering or processing event-driven
input, and some previously buffered data is available. (Very
unlikely – see Remarks.)
iSeries OPOS Developer’s Guide 2-18
CHAPTER 2 Form Control

2.5 Events
Remarks Fired when an error is detected while trying to read signature box data. Input error events
are not delivered until the DataEventEnabled property is true, to ensure proper
application sequencing occurs.

See Also Refer to the Unified POS Specification, available from http://www.nrf-arts.org/.
iSeries OPOS Developer’s Guide 2-19
CHAPTER 2 Form Control

http://www.nrf-arts.org/

 C H A P T E R 3 SigDisplay Control

3.1 General Information
Ingenico wrote its own form control, OPOSSigDisplay.ocx, as an extension to the OPOS specifications
in order to display or save signature capture data from the signature capture terminals: i6550, i6770, and
i6780. With respect to common properties and methods, OPOSSigDisplay control follows the version
1.3 specifications for OPOS controls exactly.

3.2 Summary
This section contains precise usage prerequisites for each property.

3.2.1 Properties

Table 3.1 Specific Properties

Name Type Access Initialized Before

GetDrawBorder Boolean R Methods

SetDrawBorder Boolean W Methods

GetDrawBackground Boolean R Methods

SetDrawBackground Boolean W Methods

GetPenWidth[Printer] Long R Methods, Open

SetPenWidth[Printer] Long W Methods, Open

GetDisplayNumPoints Boolean R Methods

SetDisplayNumPoints Boolean W Methods

GetNumPointsInDisplay Long R Methods

SetNumPointsInDisplay Long W Methods
iSeries OPOS Developer’s Guide 3-1

3.3 Properties
3.2.2 Methods

3.3 Properties

3.3.1 Get DrawBorder

Syntax BOOL GetDrawBorder;

Remarks GetDrawBorder toggles the drawing of the border around the signature display window.

If GetDrawBorder is True (default value), then a border displays. If set to False, no border
displays.

3.3.2 Set DrawBorder

Syntax BOOL SetDrawBorder;

Remarks GetDrawBorder toggles the drawing of the border around the signature display window.

If GetDrawBorder is True (default value), then a border displays. If set to False, no border
displays.

3.3.3 Get DrawBackground

Syntax BOOL GetDrawBackground;

Remarks GetDrawBackground toggles the drawing (FillRect(...)) of the background before
rendering the signature into the display window.

Table 3.2 Specific Methods

Name May Use After

SetOPOSBCNIBBLESignatureData Acquiring signature data as LPCSTR

SetOPOSBCNIBBLESignatureDataX Acquiring signature data as LPCSTR

SetSignatureData Creating VARIANT with signature data

SetSignatureDataX Creating VARIANT with signature data

GetSignatureType Methods

GetSignatureTypeString Methods

WriteSignatureToFile Methods

ConvertSignatureToImageBuffer Methods

EnableLiveCapture Methods

StartLiveCapture Methods

SetDeviceResolution Methods
iSeries OPOS Developer’s Guide 3-2
CHAPTER 3 SigDisplay Control

3.3 Properties
If GetDrawBackground is True (default value), the background drawing displays before
the signature is rendered in the display window. If set to False, the signature is rendered
first before the background drawing.

3.3.4 Set DrawBackground

Syntax BOOL SetDrawBackground;

Remarks SetDrawBackground toggles the drawing (FillRect(...)) of the background before
rendering the signature into the display window.

If SetDrawBackground is True (default value), the background drawing displays before
the signature is rendered in the display window. If set to False, the signature is rendered
first before the background drawing.

3.3.5 Get PenWidth

Syntax LONG GetPenWidth[Printer];

Remarks GetPenWidth adjusts the thickness of the pen used to render the signature on the screen
or printer device context.

• Default pen width on screen: 1
• Default pen width on printer: 2

3.3.6 Set PenWidth

Syntax LONG SetPenWidth[Printer];

Remarks SetPenWidth adjusts the thickness of the pen used to render the signature on the screen or
printer device context.

• Default pen width on screen: 1
• Default pen width on printer: 2

3.3.7 Get DisplayNumPoints

Syntax BOOL GetDisplayNumPoints;

Remarks GetDisplayNumPoints toggles the textual display of the number of points contained in the
signature. The default value is Off. This display is implemented in the display control of
the signature window as:

 if (m_bDisplayNumPoints)
 {
 CString csTmp;
 csTmp.Format("%ld", m_lTotalDisplayedPoints);
 pdc->TextOut(0, 0, csTmp);
 }
iSeries OPOS Developer’s Guide 3-3
CHAPTER 3 SigDisplay Control

3.4 Methods
3.3.8 Set DisplayNumPoints

Syntax BOOL SetDisplayNumPoints;

Remarks SetDisplayNumPoints toggles the textual display of the number of points contained in the
signature. The default value is Off. This display is implemented in the display control of
the signature window as:

 if (m_bDisplayNumPoints)
 {
 CString csTmp;
 csTmp.Format("%ld", m_lTotalDisplayedPoints);
 pdc->TextOut(0, 0, csTmp);
 }

3.4 Methods

3.4.1 SetOPOSBCNIBBLESignatureData

Syntax void SetOPOSBCNIBBLESignatureData(LPCSTR lpszSigData)

Remarks This method expects the signature data to be OPOS_BC_NIBBLE binary encoded. The
format type of the encoded electronic signature data is autodetected by this function.

For example, the data format of the PointArray property from either an OPOS SigCap
control or the Ingenico form control will always be OPOS_POINT_ARRAY and will
conform to OPOS specifications. On the other hand, the data format of the RawData
property will be the native data format of the hardware device and depending upon Control
Panel configuration can be one of the following:

• CME_2BYTE_BINARY
• CME_3BYTE_ASCII
• CME_5BYTE_ASCII
• CME_4BYTE_RAW
• NCR_5991

enum enSignatureType
{
 SIG_NO_DATA,
 SIG_NOT_DEFINED,
 OPOS_POINT_ARRAY,
 CME_2BYTE_BINARY,
 CME_3BYTE_ASCII,
 CME_5BYTE_ASCII,
 CME_4BYTE_RAW,
 NCR_5991
};
iSeries OPOS Developer’s Guide 3-4
CHAPTER 3 SigDisplay Control

3.4 Methods
3.4.2 SetOPOSBCNIBBLESignatureDataX

Syntax LONG SetOPOSBCNIBBLESignatureDataX(LPCTSTR lpszSigData, long
lSignatureType)

Remarks This method expects the signature data to be OPOS_BC_NIBBLE binary encoded. This
method is similar to the SetOPOSBCNIBBLESignatureData function, except the caller
specifies the signature format type as a second parameter. Signature format type
recognition is highly reliable, but if the caller knows the signature format type, it is
recommended they make use of this function over the previous version of this control.

For example, the data format of the PointArray property from either an OPOS SigCap
control or the Ingenico form control will always be OPOS_POINT_ARRAY and will
conform to OPOS specifications. On the other hand, the data format of the RawData
property will be the native data format of the hardware device and depending upon Control
Panel configuration can be one of the following:

• CME_2BYTE_BINARY
• CME_3BYTE_ASCII
• CME_5BYTE_ASCII
• CME_4BYTE_RAW
• NCR_5991

enum enSignatureType
{
 SIG_NO_DATA,
 SIG_NOT_DEFINED,
 OPOS_POINT_ARRAY,
 CME_2BYTE_BINARY,
 CME_3BYTE_ASCII,
 CME_5BYTE_ASCII,
 CME_4BYTE_RAW,
 NCR_5991
};

Return One of the following values is returned by the method:

Value Meaning
0 Success

Anything else Failure

3.4.3 SetSignatureData

Syntax void SetSignatureData (const VARIANT& varSigData, long lBinaryConversion);

Remarks This method is designed to take a VARIANT argument containing the electronic signature
data. This VARIANT can be any supported Ingenico signature type, and any supported
OPOS binary conversion. The SetSignatureData method performs auto detection of the
Ingenico or OPOS signature type.

When using these functions, it is necessary to provide the OPOS binary conversion to the
signature display control so it can convert the data back into a raw data format. OPOS
recognizes 3 binary conversion techniques that correspond to the BinaryConversion
property on the OPOS SigCap or OPOS (Extension) Form control.
iSeries OPOS Developer’s Guide 3-5
CHAPTER 3 SigDisplay Control

3.4 Methods
The standard OPOS binary conversion constants are:

// OPOS Defined Binary Conversion Constants
const LONG OPOS_BC_NONE = 0;
const LONG OPOS_BC_NIBBLE = 1;
const LONG OPOS_BC_DECIMAL = 2;

3.4.4 SetSignatureDataX

Syntax LONG SetSignatureDataX (const VARIANT& varSigData, long lBinaryConversion,
long lSignatureType)

Remarks This method is designed to take a VARIANT argument containing the electronic signature
data. This VARIANT can be any supported Ingenico signature type, and any supported
OPOS binary conversion. The SetSignatureDataX method allows the caller to specify the
Ingenico or OPOS signature type, while the SetSignatureData method performs
autodetection of the Ingenico or OPOS signature type.

When using these functions, it is necessary to provide the OPOS binary conversion to the
signature display control can convert the data back into a raw data format. OPOS
recognized 3 binary conversion techniques that will correspond to the BinaryConversion
property on the OPOS SigCap or OPOS (Extension) Form control.

The standard OPOS binary conversion constants are:

// OPOS Defined Binary Conversion Constants
const LONG OPOS_BC_NONE = 0;
const LONG OPOS_BC_NIBBLE = 1;
const LONG OPOS_BC_DECIMAL = 2;

Return One of the following values is returned by the method:

Value Meaning
0 Success

Anything else Failure

3.4.5 GetSignatureType

Syntax short GetSignatureType

Remarks Once SetSignatureData[X] or SetOPOSBCNIBBLESignatureData[X] have been
called, GetSignatureType and GetSignatureTypeString will return the interrogated
signature type to the caller.

Return values will be one of the following:

• OPOS_POINT_ARRAY
• CME_2BYTE_BINARY
• CME_3BYTE_ASCII
• CME_5BYTE_ASCII
• CME_4BYTE_RAW
• NCR_5991
• SIG_NOT_DEFINED
iSeries OPOS Developer’s Guide 3-6
CHAPTER 3 SigDisplay Control

3.4 Methods
3.4.6 GetSignatureTypeString

Syntax BSTR GetSignatureTypeString

Remarks Once SetSignatureData[X] or SetOPOSBCNIBBLESignatureData[X] have been
called, GetSignatureType and GetSignatureTypeString will return the interrogated
signature type to the caller.

Return values will be one of the following:

• OPOS_POINT_ARRAY
• CME_2BYTE_BINARY
• CME_3BYTE_ASCII
• CME_5BYTE_ASCII
• CME_4BYTE_RAW
• NCR_5991
• UNKNOWN_SIGNATURE_TYPE

3.4.7 WriteSignatureToFile

Syntax LONG WriteSignatureToFile(LPCTSTR lpszOutputFile, long lOutputFormat, long
lOutputWidth, long lOutputHeight, BOOL bDrawBorder)

Remarks This function can be used to render the captured signature data to either a monochrome
TIFF or BMP file.

Parameter Description
lpszOutputFile Specifies a valid file name for the output graphic file.The

lOutputFormat can be one of the following:

• #define FF_TIFF 0
• #define FF_BMP 1

lOutputWidth Specifies the width of the output image file.

lOutputHeight Specifies the height of the output image file.

bDrawBorder Specifies whether the output graphic has a one-pixel border
around the enclosing rectangle.

3.4.8 ConvertSignatureToImageBuffer

Syntax BSTR ConvertSignatureToImageBuffer(long lOutputFormat, long lOutputWidth, long
lOutputHeight, BOOL bDrawBorder)

Remarks This function can be used to render the captured signature data as a monochrome TIFF or
BMP and store it in a buffer. This buffer is returned to the caller.

Parameter Description
lOutputFormat Can be one of the following:

• #define FF_TIFF 0
• #define FF_BMP 1

lOutputWidth Specifies the width of the image contained in the buffer.

lOutputHeight Specifies the height of the image contained in the buffer.
iSeries OPOS Developer’s Guide 3-7
CHAPTER 3 SigDisplay Control

3.4 Methods
bDrawBorder Specifies whether the output graphic has a one-pixel border
around the enclosing rectangle.

In a .NET environment, the buffer returned by this function is stored in a string object. By
default .NET will encode this data into Unicode, which may cause some bytes to be
changed. As a result, the signature may appear blurry or contain noise. The following code
snippet in C# will convert the buffer data back to a Cp1252 encoding, which eliminates this
problem.

string buffer = sigDisplay.ConvertSignatureToImageBuffer(FF_BMP,
nWid, nHgt, true);

// encoding we've been switched to
Encoding unicode = Encoding.Unicode ;

// target encoding
Encoding extAscii = Encoding.GetEncoding(1252) ;

byte[] unicodeBytes = unicode.GetBytes(buffer) ;

// this will now contain the desired image data
byte[] extAsciiBytes = Encoding.Convert(unicode, extAscii,
unicodeBytes) ;

3.4.9 EnableLiveCapture

Syntax long EnableLiveCapture(BOOL bEnable)

Remarks Call this function to toggle whether live capturing is currently enabled. If live capturing is
enabled, then when a call is made to store any signature data, this data will be appended to
any previously stored signature data. If live capturing is disabled, such a call will cause any
previously stored signature data to be replaced.

A call to SetDeviceResolution() must be performed prior to enabling live capture. This is
in order to specify the bounds of a signature area, which cannot be known otherwise since
the signature is being stored in fragments.

Parameter Description
bEnable: Whether to enable (TRUE) or disable (FALSE) live

capturing.

See also 3.4.1 SetOPOSBCNIBBLESignatureData
3.4.2 SetOPOSBCNIBBLESignatureDataX
3.4.3 SetSignatureData
3.4.4 SetSignatureDataX
3.4.10 StartLiveCapture
iSeries OPOS Developer’s Guide 3-8
CHAPTER 3 SigDisplay Control

3.4 Methods
3.4.10 StartLiveCapture

Syntax void StartLiveCapture()

Remarks Destroys all previously stored signature data. If live capturing is enabled, all previously
stored signature fragments are destroyed.

See also 3.4.1 SetOPOSBCNIBBLESignatureData
3.4.2 SetOPOSBCNIBBLESignatureDataX
3.4.3 SetSignatureData
3.4.4 SetSignatureDataX
3.4.9 EnableLiveCapture

3.4.11 SetDeviceResolution

Syntax long SetDeviceResolution(long lMaxDeviceX, long lMaxDeviceY)

Remarks Specifies the boundaries of a live signature, in pixels.

Parameter Description
lMaxDeviceX: Maximum x-coordinate of the bounding signature box.
lMaxDeviceY: Maximum y-coordinate of the bounding signature box.

Return A value of 0 indicates success.
A value of -1 indicates one or more parameters were invalid.
iSeries OPOS Developer’s Guide 3-9
CHAPTER 3 SigDisplay Control

 C H A P T E R 4 Special Features of the iSeries
Terminals

This chapter explains how OPOS handles special features on the iSeries terminals. The following sec-
tions are included:

• 4.1 Function Key Tables (i3070, i6510, i6550, i6780 only) on page 4.1

• 4.2 Direct I/O Usage on page 4.5

• 4.2.10 Delete Receipt Contents Parameter on page 4.11

• 4.4 Migration from the eN-Touch 1000 on page 4.12

• 4.5 DUKPT Key Serial Number Format on page 4-13

• 4.6 Best Practices on page 4-13

4.1 Function Key Tables (i3070, i6510, i6550, i6780 only)
The i3070, i6510, i6550, and i6780 terminals have physical keypads containing several function keys.
(The i6770 does not have a keypad.) Function keys refer to keys other than the 0 through 9 keys. The fol-
lowing tables map these function keys to the KeyCodes that they return to the POS.

Note: Button labels for the two most popular configurations have been given. It is possible that your
buttons may be labeled differently.
iSeries OPOS Developer’s Guide 4-1

4.1 Function Key Tables (i3070, i6510, i6550, i6780 only)
4.1.1 i3070 Key Table

Table 4.1 KeyCodes for Ingenico 3070 Function Keys

Canadian Keys US Keys KeyCode (in HEX) KeyCode (in ASCII)

CHQ 0x40 '@'

SAV/EP 0x41 'A'

ALPHA MENU 0x42 'B'

OK/Enter/Entree (Enter) 0x3A ':'

Can/Ann (cancel) 0x3B ';'

Corr (backspace) 0x3C '<'

(blank) 0x3F '?'

(blank) 0x3D '='

US KeymatCanadian Keymat
iSeries OPOS Developer’s Guide 4-2
CHAPTER 4 Special Features of the iSeries Terminals

4.1 Function Key Tables (i3070, i6510, i6550, i6780 only)
4.1.2 i6000 Series Key Table

Figure 1 i6000 Series Sample Keymat

The Ingenico 6510 supports all of the KeyCodes in Table 4.2, as well as KeyCodes for the four
screen-addressable keys surrounding its display screen (see Table 4.3).

Since the Ingenico 6550 and 6780 terminals have touchscreen capabilities, it is possible to display forms
with virtual buttons while the physical function keys are active. If a virtual button has an ID equal to one
of the KeyCodes in Table 4.2, then the virtual button and its physical counterpart become indistinguish-
able, and pressing one causes the other to be changed to the pressed state as well.

Table 4.2 KeyCodes for Ingenico 6510/6550/6780 Function Keys

Canadian Keys US Keys KeyCode (in HEX) KeyCode (in ASCII)

+ 0x3F '?'

- 0x3C '<'

OK/Enter/Entree Enter O 0x3A ':'

Can/Ann Cancel X 0x3B ';'

Corr Clear < 0x3D '='
iSeries OPOS Developer’s Guide 4-3
CHAPTER 4 Special Features of the iSeries Terminals

4.1 Function Key Tables (i3070, i6510, i6550, i6780 only)
4.1.3 i6510 Additional Keys

The i6510 has four additional keys, screen-addressable keys, that are not found on the other i6000 series
terminals.

Figure 2 Ingenico 6510’s Screen Addressable Keys

In the interest of security, physical numeric buttons are disabled. Consequently, virtual buttons may not
possess KeyCodes in the range 0x30 - 0x39, which correspond to the ASCII values '0' through '9'.

Note: Physical numeric buttons are not disabled when a buffered clear-entry session is initiated via
the QueryKeyPadBoardText method (for more information, see section 2.4.6
QueryKeyPadBoardText Method on page 2.16)

Table 4.3 KeyCodes for Ingenico 6510’s Four Screen-Addressable Keys

Button Position Identifier KeyCode (in HEX) KeyCode (in ASCII)

Lower-left corner F1 0x40 '@'

Upper-left corner F2 0x41 'A'

Lower-right corner F3 0x42 'B'

Upper-right corner F4 0x43 'C'

F1

F2 F4

F3
iSeries OPOS Developer’s Guide 4-4
CHAPTER 4 Special Features of the iSeries Terminals

4.2 Direct I/O Usage
4.2 Direct I/O Usage
Several features of the Ingenico iSeries terminals that are not covered by the OPOS specification have
been exposed by the DirectIO method. It doesn’t matter which Control Object is used to send the follow-
ing Direct I/O commands, because each underlying service object supports Direct I/O usage equally.

4.2.1 DirectIO Method

Syntax LONG DirectIO(LONG Command, LONG* pData, BSTR* pString)

Parameter Description
Command A numeric index corresponding to the desired operation.
pData Supplementary data, dependent on command index. See

below.

pString Input: unused

Output: When applicable, a string containing the terminal's
response to the most recently received command.

Remarks The DirectIO method is capable of handling the following commands, as listed by
DirectIO.h in your Developer's Documentation installation directory:

const LONG DIO_SEND_RAW_DATA = 0;

const LONG DIO_CLEAR_SCREEN = 1;

const LONG DIO_DELETE_ALL_FORMS = 2;

const LONG DIO_RESET_TERMINAL = 3;

const LONG DIO_ENABLE_KEY_BEEP = 4;

const LONG DIO_DISABLE_KEY_BEEP = 5;

const LONG DIO_CONFIGURE_KEY_MASK = 6;

const LONG DIO_SET_FORMAT_SPECIFIER = 7;

const LONG DIO_DELETE_RECEIPT_CONTENTS = 8;

Each command is explained in the following sections.

To have OPOS perform the desired command immediately, set the Command parameter to
the appropriate index. Specific instructions regarding each command are provided in the
following sections.

When the terminal has successfully responded to a command sent by DirectIO, a
DirectIOEvent is fired. Unless otherwise indicated, the pString parameter of this event
will contain the terminal's response to that command, encoded subject to the current value
of the BinaryConversion property. To guarantee the correctness of pString, this property
must have a value of OPOS_BC_NIBBLE or OPOS_BC_DECIMAL when the event is
fired.

Return One of the following values is returned by the DirectIO method and placed in the
ResultCode property:

Value Meaning
OPOS_SUCCESS The method was successful.
OPOS_E_FAILURE The method was not successful.
Other Values See 2.3.14 ResultCode Property R on page 2.10
iSeries OPOS Developer’s Guide 4-5
CHAPTER 4 Special Features of the iSeries Terminals

4.2 Direct I/O Usage
4.2.2 Send Raw Data Parameter

Parameter Value
Command DIO_SEND_RAW_DATA
pData Ignored

pString Input: An encoded sequence of bytes to send to the terminal.

Output: The terminal's encoded response string.

Remarks Use this Direct I/O command to send a raw stream of bytes to the terminal (for full context,
see 4.2.1 DirectIO Method on page 4.5). Ensure the BinaryConversion property of your
control is set to OPOS_BC_NIBBLE or OPOS_BC_DECIMAL, and the contents of
pString are encoded appropriately. See the OPOS specification for details regarding the
BinaryConversion property.

4.2.3 Clear Screen Parameter

Parameter Value
Command DIO_CLEAR_SCREEN
pData Ignored

pString Input: ignored

Output: The terminal's encoded response string.

Remarks Use this Direct I/O command to clear the contents of your terminal display (for full context,
see 4.2.1 DirectIO Method on page 4.5). Your OPOS Controls will be unaware of this
change in display state.

4.2.4 Delete All Forms Parameter

Parameter Value
Command DIO_DELETE_ALL_FORMS
pData Ignored

pString Input: ignored

Output: The terminal's encoded response string.

Remarks Use this Direct I/O command to delete all forms currently stored on the terminal (for full
context, see 4.2.1 DirectIO Method on page 4.5).

4.2.5 Reset Terminal Parameter

Parameter Value
Command DIO_RESET_TERMINAL
pData Ignored

pString Ignored

Remarks Use this Direct I/O command to reset the terminal (for full context, see 4.2.1 DirectIO
Method on page 4.5). There is no response to this command.
iSeries OPOS Developer’s Guide 4-6
CHAPTER 4 Special Features of the iSeries Terminals

4.2 Direct I/O Usage
4.2.6 Enable Key Beeps Parameter

Parameter Value
Command DIO_ENABLE_KEY_BEEPS
pData Ignored

pString Input: ignored

Output: The terminal's encoded response string.

Remarks Use this Direct I/O command to enable key beeps (for full context, see 4.2.1 DirectIO
Method on page 4.5). By default, all physical keys beep when pressed, so this command
only has an effect when key beeps have been previously disabled via
DIO_DISABLE_KEY_BEEPS.

4.2.7 Disable Key Beeps Parameter

Parameter Value
Command DIO_DISABLE_KEY_BEEPS
pData Ignored

pString Input: ignored

Output: The terminal's encoded response string.

Remarks Use this Direct I/O command to disable key beeps (for full context, see 4.2.1 DirectIO
Method on page 4.5). Key beeps can be re-enabled via the DIO_ENABLE_KEY_BEEPS
command.

4.2.8 Configure Key Masks Parameter

Parameter Value
Command DIO_CONFIGURE_KEY_MASK
pData Address of a number representing a logical ORing of the

physical function keys to turn on.

pString Input: ignored

Output: The terminal's encoded response string.

Remarks Use this Direct I/O command to specify which physical function keys to enable on your
terminal (for full context, see 4.2.1 DirectIO Method on page 4.5). The flags below can be
ORed together to specify any combination of keys to enable. All function keys are enabled
by default.

const LONG DIO_KM_ENABLE_NONE = 0x0000 ;

const LONG DIO_KM_ENABLE_ENTER = 0x0001 ;

const LONG DIO_KM_ENABLE_CANCEL = 0x0002 ;

const LONG DIO_KM_ENABLE_00 = 0x0004 ;

const LONG DIO_KM_ENABLE_CLEAR = 0x0008 ;

const LONG DIO_KM_ENABLE_UP = 0x0020 ;

const LONG DIO_KM_ENABLE_F1 = 0x0040 ;

const LONG DIO_KM_ENABLE_F2 = 0x0080 ;
iSeries OPOS Developer’s Guide 4-7
CHAPTER 4 Special Features of the iSeries Terminals

4.2 Direct I/O Usage
const LONG DIO_KM_ENABLE_F3 = 0x0100 ;

const LONG DIO_KM_ENABLE_F4 = 0x0200 ;

const LONG DIO_KM_ENABLE_ALL = 0xFFFF ;

A keymask can also be specified as an attribute of a form. When a form that possesses
keymask information is displayed, the form's keymask overrides all keymask settings sent
via the DirectIO method. When the form is no longer displayed on the terminal, the
keymask setting will revert back to its previous setting. For more details on specifying
keymasks in forms, see the Form Designer application’s online help.

Example The following code snippet enables the <Enter> and <Clear> keys, and disable all others:

WORD nSomeStr = 0 ;
BSTR bstr = ::SysAllocString(&nsomeStr) ;
LONG nKeys = DIO_KM_ENABLE_ENTER | DIO_KM_ENABLE_CLEAR
;
LONG nCommand = DIO_CONFIGURE_KEY_MASK ;
m_Form.DirectIO(nCommand, &nKeys, &bstr) ;

4.2.9 Set Format Specifier Parameter

Parameter Value
Command DIO_SET_FORMAT_SPECIFIER
pData Ignored

pString Input: The format specifier string

Output: None

Remarks Use this Direct I/O command to assign the format specifier (FS) string to use during clear
entry (for full context, see 4.2.1 DirectIO Method on page 4.3). By default, the format
specifier is an empty string, and numbers are displayed on the screen with no additional
formatting.

An FS string allows you to customize the display of key data entered by the user during the
clear entry process. FS strings contain display attributes that tell the terminal how to display
the data on the screen. This section explains the display attributes and provides examples
on how to use the attributes in an FS string.

There are two kinds of display attributes: general and specific.

• General attributes apply to the entire data entry process.

• Specific attributes apply to one or more display positions used by the data entry
process. Display attributes are separated within the FS string by the percent sign (%).

These attributes are explained in the following sections.

FS strings are always parsed starting from the right, since it is assumed that the text will
always be aligned to the right and shift to the left.
iSeries OPOS Developer’s Guide 4-8
CHAPTER 4 Special Features of the iSeries Terminals

4.2 Direct I/O Usage
4.2.9.1 General Attributes

General attributes follow the format:

%

General attribute

Data

The general attributes are:

m – The m attribute specifies the minimum number of characters to be entered by the user. The value
following this attribute is interpreted as the minimum number of characters. The default value is zero (0).
The range for this attribute is 0 – MAX. If you press ENTER before typing the minimum number of char-
acters, it has no effect. If the number specified cannot be accommodated, the m attribute is adjusted inter-
nally.

Note: MAX is the maximum number of display positions available within the data entry field.

M – The M attribute specifies the maximum number of characters to be entered by the user. The value
following this attribute is interpreted as the maximum number of characters. The default value is MAX.
The range for this attribute is 0 – MAX. If a user presses characters after the maximum number has been
reached, those characters will not be displayed on the screen or recorded. If the number specified cannot
be accommodated, the M attribute is adjusted internally.

p – The p attribute password-protects and changes the appearance of all characters entered by the user.
The ASCII character following this attribute is interpreted as the password character and is displayed on
the screen in place of the characters entered by the user. For example, when the user enters a PIN, the p
attribute can specify that asterisks appear on the screen instead of numbers.

4.2.9.2 Specific Attributes

Specific attributes follow the format:

%

Specific attribute

Display string

The display string appears on the screen. The specific attributes are:

f – Fixed characters. The f attribute defines the corresponding positions to be displayed at all times. The
f attribute cannot be modified during the data entry process.

h – Hidden characters. The h attribute causes the specific display positions to show only when the first
one from the right is passed by the shifting text (text being entered by user). From that moment on, these
positions are fixed and cannot be modified for the rest of the data entry process.

o – Overwriting characters. The o attribute defines the corresponding positions to be displayed at the
beginning of the data entry process, but allows shifting text to overwrite them.
iSeries OPOS Developer’s Guide 4-9
CHAPTER 4 Special Features of the iSeries Terminals

4.2 Direct I/O Usage
s – Shifting characters. The s attribute defines the corresponding positions to be displayed at the begin-
ning of the data entry process, and then shifted one position at a time when the first one from the right is
passed by shifting text.

The use of “%” as a constant in the format specifier is restricted to using it as a fixed character. It must be
at the rightmost position in the specifier, e.g. “%m0%M2%f %f%

4.2.9.3 Examples of Format Specifiers

Table 4.4 Examples of Format Specifiers

Format Specifier Key Pressed Display

“%m2%M4”

1

2

3

4

5

1

12

123

1234

1234

“%m2%M6%h,%o 0%f.%o00”

1

2

3

4

5

6

7

0.00

0.01

0.12

1.23

12.34

123.45

1,234.56

1,234.56

“%m0%M6%o %h,%o %s$%o0%f.%o00”

5

1

2

3

9

7

6

$0.00

$0.05

$0.51

$5.12

$51.23

$512.39

$5,123.97

$5,123.97
iSeries OPOS Developer’s Guide 4-10
CHAPTER 4 Special Features of the iSeries Terminals

4.2 Direct I/O Usage
4.2.10 Delete Receipt Contents Parameter

Parameter Description
Command DIO_DELETE_RECEIPT_CONTENTS

pData Address of a number representing what scrolling receipt
contents to delete.

pString Input: Ignored

Output: The terminal's encoded response string.

Use this Direct I/O Command to delete a row of text from a scrolling receipt area on the current form.
The eight most significant bits of the number whose address is pData are interpreted as the index of the
target row, where an index of 1 indicates the topmost row. The remaining twenty-four bits are reserved
for future expansion.

“%m10%M10%h(%o %s %h) %o %h-%o ”

4

1

6

2

4

5

6

7

0

0

1

4

41

416

4162

4-1624

41-6245

416-2456

4) 162-4567

41) 624-5670

(416) 245-6700

(416) 245-6700

“%m9%M9%o %f/%o %f/%o ”

1

2

3

4

5

6

7

8

9

1

“ / / “

“ / / 1”

“ / / 12”

“ / /123”

“ / 1/234”

“ / 12/345”

“ /123/456”

“ 1/234/567”

“ 12/345/678”

“123/456/789”

“123/456/789”

“%m0%M2%f %f%”

1

5

%

1 %

15 %

Table 4.4 Examples of Format Specifiers (Continued)

Format Specifier Key Pressed Display
iSeries OPOS Developer’s Guide 4-11
CHAPTER 4 Special Features of the iSeries Terminals

4.3 Contactless Card Payment (i6510, i6550, i6770, i6780)
4.3 Contactless Card Payment (i6510, i6550, i6770, i6780)
If you have installed Ingenico’s Contactless Payment Expansion Module (CPEM) on your terminal(s),
OPOS will support reading data from contactless payment cards. Writing data to a contactless card is not
currently supported. The CPEM is available for the i6510, i6550, i6770, and i6780. For more information
on purchasing a CPEM, contact your Ingenico representative.

OPOS clients can use the existing OPOS MSR control object to receive contactless card data. The behav-
ior of the MSR control during device enable (i.e., when the SetDeviceEnabled property is set to TRUE)
is subject to the current OPOS configuration as specified in the Control Panel Applet. To use the contact-
less payment reader, be sure to select the Use CPEM Reader check box in the OPOS-Ingenico Setup
Program (for details, see 1.2.4 OPOS Configuration on page 1.4).

If you want to use the CPEM and OPOS fails to successfully enable the CPEM reader, it will fire an
ErrorEvent to the application. MSR operation is unaffected by this failure.

When either the MSR or the CPEM reader receives card data, DataEvents are fired as usual by the MSR
control. In addition, if OPOS is configured to use the CPEM reader, a DirectIOEvent is fired to indicate
the source of the card data. The pData parameter contains the source information, and shall contain one
of the following values defined in DirectIO.h:

const LONG DIO_CARD_SOURCE_MSR = 0 ;

const LONG DIO_CARD_SOURCE_CPEM = 1 ;

4.4 Migration from the eN-Touch 1000
If you have an existing application that uses OPOS for the eN-Touch 1000, and want to port your applica-
tion to the Ingenico iSeries terminal family, follow these steps:

1. Ensure the UPOS Interface Application is installed on the target terminal. If it is, then when you
power on the device, you will see the application title screen after a delay of a few seconds. If it is not,
then you must install it (UPOS Interface Application).

2. Install OPOS on the host by running the file "OPOS for the Ingenico iSeries.exe".

3. On your desktop, select Start > Settings > Control Panel, and double click Ingenico 6xxx
Configuration. The control panel application opens.

Configure your device as needed. By default, OPOS assumes an RS-232 connection, with port set-
tings of 19200,8,N,1.

If your application is written in C++ and uses wrapper classes to interact with Ingenico's Control
Objects, we recommend you remove and regenerate these wrapper classes. This is because the Con-
trol Objects in this Integration Kit support more recent versions of the OPOS specification.

4. Replace all device strings that are passed to the Open() method with the string "Ing6xxx". If
"Ing6xxx" is not a suitable device string for your needs, you must modify the registry. The target keys
are located at [HKLM\Software\OLEForRetail\ServiceOPOS*DeviceName*\Ing6xxx], where
DeviceName refers to one of the six OPOS device classes supported by this Integration Kit. Simply
rename Ing6xxx to whatever string suits your needs, and be sure to pass this same string to the Open()
method.

5. If your application is written in C++, be sure it compiles with the most recent OPOS header files.
iSeries OPOS Developer’s Guide 4-12
CHAPTER 4 Special Features of the iSeries Terminals

4.5 DUKPT Key Serial Number Format
6. If you are using the Form control, you must port your existing .icf form files to the new .icg format.
This can be done via the Ingenico Form Designer.

Note: Some members of the 6xxx device family features lower screen resolutions than the eN-Touch
1000, and so may require one or more elements to be resized. The screen resolutions are
defined in the Form Designer online help file.

7. If you are using the PINPad control, you may need to modify the value of the transactionHost
parameter to the BeginEFTTransaction() method. For the eN-Touch 1000, this parameter is equal to
slotNumber+1, where slotNumber is the index of the key to use for PIN encryption. For 6xxx
terminals, this parameter is set equal to slotNumber to avoid confusion.

4.5 DUKPT Key Serial Number Format
During PIN transactions that use Derived Unique Key Per Transaction (DUKPT) key management, a key
serial number (KSN) is returned from the terminal and stored in the AdditionalSecurityInformation
property of the OPOS PINPad control. This property is a hex-formatted ASCII string 20 characters in
length.

For example, if the KSN can be expressed in hexadecimal as 0xFFFF9876543210E000A, AdditionalSe-
curityInformation will report 'FFFF9876543210E000A'.

4.6 Best Practices
The following guidelines are provided to ensure maximum performance and efficiency when using
OPOS with Ingenico's iSeries terminals.

When an iSeries terminal with the UPOS Interface Application installed is first powered on, a splash
screen displays current connection settings and version information. If you are having trouble communi-
cating with your iSeries terminal, compare the splash screen's connection settings with what is specified
in the Ingenico OPOS Control Panel App. The splash screen will remain visible until the POS Applica-
tion has begun sending data to the terminal, and then it will disappear.

Ingenico's OPOS Controls implement the OPOS Common Method ClearInput() to allow a user to clear
incoming event queues. In some contexts, calling ClearInput() may result in data sent to the device, to,
for example, disable the MSR. In order to minimize terminal traffic, Ingenico recommends only calling
ClearInput() when there is data in the event queue, which can be determined by inspecting the control's
DataCount property.

OPOS controls corresponding to input devices (PINPad, MSR, SignatureCapture, POSKeyboard, and
Form) may poll the iSeries terminal when the DeviceEnabled property is set to TRUE. To minimize traf-
fic and improve performance, Ingenico recommends setting DeviceEnabled to FALSE when that control
is not in use.

Ingenico's OPOS Service Objects are designed to free all resources they consume when the Close()
method is called. To minimize processor usage, Ingenico recommends calling Close() if the Service
Object will not be used for an extended period of time, for example: overnight when no transactions are
taking place. The Open() method can be subsequently called when transactions are resumed.

Customers moving to an i6780 terminal from an i6770 terminal must consider when porting their forms
that the i6780 terminal's screen is 6 pixels shorter than the i6770's. Also, all line display screen modes
result in one less row for the i6780 than the i6770. In addition, since the i6770 does not have a physical
iSeries OPOS Developer’s Guide 4-13
CHAPTER 4 Special Features of the iSeries Terminals

4.6 Best Practices
keypad and the i6780 does have a keypad, you must consider that any or all physical keys may be active
when a form is displayed, and so the POS application must consider a larger group of keys capable of
generating data events than before.
iSeries OPOS Developer’s Guide 4-14
CHAPTER 4 Special Features of the iSeries Terminals

Index
Symbols

% as constant, use of, 4-10

A

access multiple devices, 1-12
ActiveX controls, 1-7
add a new device, 1-2
architecture, 1-2
attributes, general, 4-9
AutoDisable, 2-3

B

background draw before signature, 3-2
Backlight power off, 1-4
Baud Rate, 1-4
bDrawBorder, 3-7
BinaryConversion, 2-3, 2-9, 2-10

DisplayText, 2-15
border, signature display window, 3-2
boundaries of signature, 3-9
buffer storage of signature, 3-7
Byte Size, 1-4

C

characters entered, max number, 4-9
characters entered, minimum number, 4-9
characters entered, password protect, 4-9
CharacterSet, 2-6

summary, 2-4
CharacterSetList, 2-7

summary, 2-4
CheckHealth, 2-5
CheckHealthText, 2-3
Claim, 2-3 to 2-6
Claim() method, download, 1-7
clear entry, format specifier to use, DIO com-
mand, 4-8

Clear Screen parameter, 4-6
ClearInput, 2-5
ClearInput method, 4-13
ClearOutput, 2-5
Close, 2-5
Close method, 4-13
COM Port, 1-4
configuration entries, 1-11
Configure Key Masks parameter, 4-7
conflict in line display, 1-9
connect to other devices, 1-3
connection details, 1-12
connection settings, 4-13
contactless payment card reader, 4-12
contactless payment reader, 1-5
contents of integration kit, 1-2
ControlObjectDescription, 2-3
ControlObjectVersion, 2-3
ConvertSignatureToImageBuffer, 3-2
CPEM, 4-12
CPEM reader, enable, 1-5
CreateWindow, 1-9
Cryptographic Key Management, 1-5

D

DataCount, 2-3
DataEvent, 2-18

DisplayFormOnDevice, 2-13
PointArray, 2-10
prerequisites, 2-6
QuerySignatureBoxData, 2-16
RawData, 2-10
StoreFormOnDevice, 2-12
TotalPoints, 2-11
when fired, 2-2

DataEventEnabled, 2-3
ErrorEvent, 2-19
iSeries OPOS Developer’s Guide I-i

Debug tab, 1-7
Debugging File Support, 1-7
Delete All Forms parameter, 4-6
delete all forms, DIO command, 4-6
Delete Receipt Contents parameter, 4-11
design forms, 1-7
destroy signature data, 3-9
DestroyWindow, 1-9
Device Connection Type, 1-4
Device Model, 1-6
device sharing rules, 2-1
device, add, 1-2
DeviceColumns

summary, 2-4
DeviceDescription, 2-3
DeviceEnabled, 2-3
DeviceEnabled property, improve perfor-
mance, 4-13
DeviceName, 2-3
DeviceRows

summary, 2-4
devices, access multiple, 1-12
DIO commands, 4-5
DIO_CLEAR_SCREEN, 4-6
DIO_CONFIGURE_KEY_MASK, 4-7
DIO_DELETE_ALL_FORMS, 4-6
DIO_DISABLE_KEY_BEEPS, 4-7
DIO_ENABLE_KEY_BEEPS, 4-7
DIO_KM_ENABLE, 4-7
DIO_RESET_TERMINAL, 4-6
DIO_SEND_RAW_DATA, 4-6
DIO_SET_FORMAT_SPECIFIER, 4-8
DirectIO, 2-5
DirectIO method, 4-5
DirectIOEvent

prerequisites, 2-6
Disable Key Beeps Parameter, 4-7
DisplayFormOnDevice, 2-13

prerequisites, 2-5
DisplayText, 2-5, 2-15
DisplayTextAt, 2-5, 2-14
Download New Application, 1-7
draw background, 3-2
draw border, signature display window, 3-2
DUKPT, 4-13

E

Enable, 2-4 to 2-6
Enable Debugging File Support, 1-7
Enable Key Beeps parameter, 4-7
EnableLiveCapture, 3-2, 3-8
ENFormSigDisplay, 1-10
eN-Touch 1000 migration, radio buttons, 2-17
eN-Touch 1000, migration from, 4-12
ErrorEvent, 2-18

prerequisites, 2-6
errors in line display, 1-9

F

f attribute, 4-9
First Key slide, 1-5
First M/S Slot list box, 1-5
fixed characters (f) attribute, 4-9
FontHeight, 2-7

summary, 2-4
FontStyle, 2-7

summary, 2-4
FontTypeface, 2-8

summary, 2-4
FontTypefaceList, 2-8

FontTypeface, 2-8
summary, 2-4

FontWidth, 2-7
summary, 2-4

Form Designer, 1-7
Form Designer form control, 1-10
Form tab, 1-6
FORM_CS_ASCII, 2-6
FORM_CS_WINDOWS, 2-6
format specifier, clear entry, DIO command,
4-8
format specifiers, examples, 4-10
forms

generate and design, 2-1
forms, delete all, DIO command, 4-6
forms, update, 2-2
FreezeEvents, 2-3
function keys, 4-1
function keys to enable, DIO command, 4-7
iSeries OPOS Developer’s Guide I-ii

 INDEX
G

general attributes, 4-9
General tab, 1-4
GetDisplayNumPoints, 3-1, 3-3
GetDrawBackground, 3-1, 3-2
GetDrawBorder, 3-1, 3-2
GetNumPointsInDisplay, 3-1
GetPenWidth, 3-1, 3-3
GetSignatureType, 3-2, 3-6
GetSignatureTypeString, 3-2, 3-7

H

h attribute, 4-9
hidden characters (h) attribute, 4-9

I

i3070, 1-6
i3070 function keys, 4-2
i6510, 1-6
i6510 function keys, screen addressable, 4-4
i6510, i6550, i6780 function keys, 4-3
i6550, 1-6
i6770, 1-6
i6780, 1-6
icf to icg forms, 4-13
Ingenico form control, 3-1
installation, 1-3
Inter Key slide, 1-5
IP address, 1-4
IVICMForm.ocx, 2-1

K

key beeps, disable, DIO command, 4-7
key beeps, enable, DIO command, 4-7
KeyCodes, 4-1
keymask configure, DIO command, 4-8
KeyPadBoardPrompt1, 2-11

summary, 2-4
KeyPadBoardPrompt2, 2-11
KeyPadBoardText, 2-11

summary, 2-4

L

Line Display Mode, 1-6
LineDisplay, 1-9

LineDisplay error, 1-9
LineDisplay tab, 1-6
live capture, enable, 3-8
lOutputHeight, 3-7
lOutputWidth, 3-7
lpszOutputFile, 3-7

M

M attribute, 4-9
m attribute, 4-9
Maintenance tab, 1-7
MaximumX, 2-9

summary, 2-4
MaximumY, 2-9

summary, 2-4
memory problems, preventing, 2-2
migrate OPOS SigCap, 1-9
migration from eN-Touch 1000, 4-12
minimize processor usage, 4-13
model for Ingenico form control, 2-1
MSR control, 1-10
MSR tab, 1-5

O

o attribute, 4-9
Open, 2-3 to 2-6
OPOS definition, 1-1
OPOS for the Ingenico 6XXX.exe, 1-3
OPOS Line Display, 2-1
OPOS LineDisplay

DisplayText, 2-15
DisplayTextAt, 2-14

OPOS_BC_NIBBLE, 3-4, 3-5
OPOSIVICMForm, 1-10
OPOSLineDisplay, 1-9
OPOSMSR, 1-10
OPOSPinPad, 1-10
OPOSSigCap, 1-9
OPOSSigDisplay.ocx, 3-1
OutputID, 2-3
Overwriting characters (o) attribute, 4-9

P

p attribute, 4-9
Parity, 1-4
password-protect characters, 4-9
iSeries OPOS Developer’s Guide I-iii

pen thickness, 3-3
performance improvement, 4-13
peripheral change, 1-2
PIN Entry Timeouts, 1-5
PIN pad control, 1-10
PINPad tab, 1-5
PointArray, 2-9, 2-11, 3-4, 3-5

QuerySignatureBox, 2-16
summary, 2-4
TotalPoints, 2-11

points in signature, display, 3-3
porting from eN-Touch 1000 to iSeries, 4-12
porting from i6770 to i6780, 4-13
power up terminal, 1-3
prerequisites for properties and methods, 2-3,
3-1
processor usage minimize, 4-13

Q

QueryKeyBoardText method, 2-16
QueryKeyPadBoardText

prerequisites, 2-5
QueryRadioButton, 2-5
QueryRadioButtonState, 2-17
QuerySignatureBoxData, 2-2, 2-16

prerequisites, 2-5

R

radio button state query, 2-17
raw data send, DIO command, 4-6
RawData, 2-10, 3-4, 3-5

QuerySignatureBox, 2-16
summary, 2-4

RealTimeDataEnabled, 2-9, 2-11
registry

location of Ingenico Form, 2-1
registry settings, 1-11
Release, 2-5, 2-11
Reset Terminal parameter, 4-6
resolution for signature, 3-9
ResultCode, 2-3, 2-10
ResultCodeExtended, 2-3

ErrorEvent, 2-18

S

s attribute, 4-10

screen clear, DIO command, 4-6
scrolling receipt contents to delete, 4-11
Send Raw Data parameter, 4-6
Serial Port, 1-4
ServiceObjectDescription, 2-3
ServiceObjectVersion, 2-3
Set Format Specifier parameter, 4-8
SetDeviceResolution, 3-2, 3-9
SetDisplayNumPoints, 3-1, 3-4
SetDrawBackground, 3-1, 3-3
SetDrawBorder, 3-1, 3-2
SetNumPointsInDisplay, 3-1
SetOPOSBCNIBBLESignatureData, 1-10,
3-2, 3-4
SetOPOSBCNIBBLESignatureDataX, 3-2,
3-5
SetPenWidth, 3-1, 3-3
SetSignatureData, 1-10, 3-2, 3-5
SetSignatureDataX, 3-2, 3-6
setup, 1-3
sharing rules for device, 2-1
shifting characters (s) attribute, 4-10
SigCap, 1-9
SigDisplay, 1-10
signature boundaries, 3-9
signature data, destroy, 3-9
signature format type, autodetect encoded,
3-4
signature format type, autodetect Ingeni-
co/OPOS, 3-5
signature format type, return, 3-6, 3-7
signature format type, specify encoded, 3-5
Signature tab, 1-6
signature type, specify OPOS or Ingenico, 3-6
signature, render to TIFF or BMP, 3-7
specific attributes, 4-9
splash screen's connection settings, 4-13
StartLiveCapture, 3-2, 3-9
State, 2-3
StatusUpdateEvent

prerequisites, 2-6
Stop Bits, 1-4
StoreFormOnDevice, 2-12

prerequisites, 2-5
system registry setup, 1-11
iSeries OPOS Developer’s Guide I-iv

 INDEX
T

TCP/IP Port, 1-4
terminal reset, DIO command, 4-6
test forms, 1-7
text display and manipulation, 1-9
text size setting, 1-9
TotalPoints, 2-11, 3-4

PointArray, 2-9
QuerySignatureBox, 2-16
summary, 2-4

trouble communicating with your iSeries ter-
minal, 4-13

U

Unified POS Specification, 1-6
USB, 1-4
Use CPEM Reader, 1-5
Use Form During Clear Entry check box, 1-6
Use Form During PIN Entry check box, 1-5

V

version information, 4-13
Visual Basic project, 1-7
Visual C++ dialog, 1-7

W

WriteSignatureToFile, 3-2, 3-7
iSeries OPOS Developer’s Guide I-v

iSeries OPOS Developer’s Guide I-vi

	iSeries
	Table of Contents
	Installation
	1.1 OPOS Overview
	1.2 Installation
	1.2.1 Contents
	1.2.2 Connecting and Powering the Terminal
	1.2.3 Software Installation
	1.2.4 OPOS Configuration

	1.3 Designing and Testing Forms
	1.4 Using the OPOS Controls
	1.5 Setting Up the System Registry

	Form Control
	2.1 General Information
	2.1.1 Model
	2.1.2 Device Sharing
	2.1.3 Form Types
	2.1.4 Specific Events
	2.1.5 File System Maintenance

	2.2 Summary
	2.2.1 Properties
	2.2.2 Methods
	2.2.3 Events

	2.3 Properties
	2.3.1 CharacterSet Property R/W
	2.3.2 CharacterSetList Property R
	2.3.3 FontHeight Property R
	2.3.4 FontWidth Property R
	2.3.5 FontStyle Property R/W
	2.3.6 FontTypefaceList Property R
	2.3.7 FontTypeface Property R/W
	2.3.8 DeviceRows Property R
	2.3.9 DeviceColumns Property R
	2.3.10 MaximumX Property R
	2.3.11 MaximumY Property R
	2.3.12 PointArray Property R
	2.3.13 RawData Property R
	2.3.14 ResultCode Property R
	2.3.15 TotalPoints Property R
	2.3.16 KeyPadBoardPrompt1 Property R/W
	2.3.17 KeyPadBoardText Property R

	2.4 Methods
	2.4.1 StoreFormOnDevice Method
	2.4.2 DisplayFormOnDevice Method
	2.4.3 DisplayTextAt Method
	2.4.4 DisplayText Method
	2.4.5 QuerySignatureBoxData Method
	2.4.6 QueryKeyPadBoardText Method
	2.4.7 QueryRadioButtonState Method

	2.5 Events
	2.5.1 DataEvent
	2.5.2 ErrorEvent

	SigDisplay Control
	3.1 General Information
	3.2 Summary
	3.2.1 Properties
	3.2.2 Methods

	3.3 Properties
	3.3.1 Get DrawBorder
	3.3.2 Set DrawBorder
	3.3.3 Get DrawBackground
	3.3.4 Set DrawBackground
	3.3.5 Get PenWidth
	3.3.6 Set PenWidth
	3.3.7 Get DisplayNumPoints
	3.3.8 Set DisplayNumPoints

	3.4 Methods
	3.4.1 SetOPOSBCNIBBLESignatureData
	3.4.2 SetOPOSBCNIBBLESignatureDataX
	3.4.3 SetSignatureData
	3.4.4 SetSignatureDataX
	3.4.5 GetSignatureType
	3.4.6 GetSignatureTypeString
	3.4.7 WriteSignatureToFile
	3.4.8 ConvertSignatureToImageBuffer
	3.4.9 EnableLiveCapture
	3.4.10 StartLiveCapture
	3.4.11 SetDeviceResolution

	Special Features of the iSeries Terminals
	4.1 Function Key Tables (i3070, i6510, i6550, i6780 only)
	4.1.1 i3070 Key Table
	4.1.2 i6000 Series Key Table
	4.1.3 i6510 Additional Keys

	4.2 Direct I/O Usage
	4.2.1 DirectIO Method
	4.2.2 Send Raw Data Parameter
	4.2.3 Clear Screen Parameter
	4.2.4 Delete All Forms Parameter
	4.2.5 Reset Terminal Parameter
	4.2.6 Enable Key Beeps Parameter
	4.2.7 Disable Key Beeps Parameter
	4.2.8 Configure Key Masks Parameter
	4.2.9 Set Format Specifier Parameter
	4.2.10 Delete Receipt Contents Parameter

	4.3 Contactless Card Payment (i6510, i6550, i6770, i6780)
	4.4 Migration from the eN-Touch 1000
	4.5 DUKPT Key Serial Number Format
	4.6 Best Practices

	Index

