EPSON

EXCEED YOUR VISION

EPSON OPOS ADK MANUAL

APPLICATION DEVELOPMENT
GUIDE

GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

Notes

(1) Reproduction of any part of this documentation by any means is prohibited.

(2) The contents of this documentation are subject to change without notice.

(3) Comments and natification of any mistakes in this documentation are gratefully
accepted.

(4) This software cannot be used with other equipment that the specified.

(5) EPSON will not be responsible for any consequences resulting from the use of any
information in this documentation.

Trademarks

Microsoft®, Windows®, Windows Server®, Visual Basic® and Visual C++® are
trademarks or registered trademarks of Microsoft Corporation in the United States and/or
other countries.

EPSON® and ESC/POS® are registered trademarks of Seiko Epson Corporation.

Other product and company names used herein are for identification purposes only and
may be trademarks or registered trademarks of their respective companies.

Copyright © 2000-2019 Seiko Epson Corporation

Version 3.00 Feb. 2019

Contents
Y =Tod T o T 1 o Yo (1T oY o ST 1
Section 2. General DeVEIOPMENTooiiiii et nee e 2
2.1 Who Should Read ThisS ManUALcouiiiiiiiiiiiiiiiiee e 2
2.2 OPOS Software System HIierarChycccccoviiiiiiiiiiiiiei e 2
2.3 Checking ConnectionNs Of DEVICESuuuuuuiuuiiiiiiiiiiiiiiiiiinniinnrennennennnnrenneennn... 3
A L o To T b =] T [T I o) 3
2.5 Creating @ LOG Fil@......uuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiieiiieiieeieeeeieneeenebeseeeseeeeeeesereeeseessnsensnennns 4
2.6 RegiStry IMPOM/SIONNGuveiiiiiiiee ittt e e e e e s s st reeeaaeeenans 6
2.7 LOQICal DEVICE NAIME......uuii s nnnnnnansnnsnnnnnnnns 6
2.8 ClaimDevice and ReleaseDevice Methods..............eeiiieiiiiiiiiiiiiiie e 8
2.9 UPOS REIEIENCEot e e e as 8
Y e To (o] TG T U LT Vo = S 9
G0 I £ To T 1@ 1Y = 9
1T 0 L= o To [0] v= T | £ 12
3.3 API Function CompariSON/PastiNg...........uuuuuuuurummuuniiniiniiiiiieiniinnnnnennnnnnnnnnnnnnnnnnes 13
Section 4. OPOS APl ProgramimMingc.ccceecieiieeieeseeseeseeesteeseesiessseesseesseessesnseessessnnes 14
4.1 Things to Consider when Programming..........ccoooveiiiii oo 14
4.2 Code EXPIanationsccooiieiiiee e 14
4.3 CoAING SAMPIES oo 15
Section 5. Class Specific INfOrmationcccocve e 20
Section 6. Error INfOrMationcoecie e 21
6.1 When Executing CommoN Properti€S......... ... uueruueirmriiiiiennenennnnnnnnnnnnnnnnnnnnnnnnnnnnes 21
6.2 When Executing Common MethOdSuuieiiii e 22
Y =Yoo] ARV T o T o 1 SRS 30
7.1 Cautions for Programming...... ... s s s 30
7.2 Precautions fOr VCH+ ...ttt 31

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

Section 1. Introduction

This manual is an application development guide describing warnings and elements
related to the programming in connection with development of applications using the API
functions supported by OPOS.

Descriptions in this manual are intended for the following programming languages.

Microsoft Visual Basic 2010 or higher
Microsoft Visual C++ 2010 or higher

Please read this guide before you start programming and use it as help during
programming. For explanation on the various devices, please refer to the manuals for each
device. The programming examples given in the manual for each device are intended for
Visual Basic.

For information on installing and setting up the EPSON OPOS ADK, please refer to the
"EPSON OPOS ADK User's Manual (Installer/ SetupPOS/ TMUSB)". For detailed
explanations of API functions, please refer to the “UPOS 1.14" created by the OPOS
Committee.

1

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

Section 2. General Development

This section contains useful information ranging from setting of the OPOS software to
developing, and other items that should be read and understood before attempting to
develop an OPQOS application.

2.1 Who Should Read This Manual
Please refer to the “WHO SHOULD READ THIS DOCUMENT” section of UPOS
1.14.

2.2 OPOS Software System Hierarchy
OPOS contains two hierarchical objects called the Control Object and the Service
Object. Control Object may be written as CO, and Service Object may be written
as SO from here on.

SYSTEM HIERARCHY

2

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

2.2.1 Control Object

The POS Printer, MICR, Line Display, Cash Drawer, etc., exist as objects in the
system, listed by device class (category), and are stored as ActiveX controls that
Visual Basic and Visual C++ can use.

Consult the UPOS for a control’s application interface. EPSON offers EPSON
COs that complies with UPOS 1.14. In addition to these, there is CommonCO
(CCO) offered by the OPOS Technical Committee. Provided that the COs abide
to the CPG, even the COs of other manufacturers can be used together with
EPSON OPOS ADK.

2.2.2 Service Object
Service Objects exist as objects in the system, listed by device types. They
encompass the dependent parts of the devices. They are used by the
higher-ranking Control Objects. EPSON SOs are created dependent upon the
devices supported by EPSON OPOS ADK.

2.3 Checking Connections of Devices
Before starting OPOS programming, please check that each of the device
categories is connected correctly. Using the SetupPOS utility’s interactive
CheckHealth function makes it a simple task to check the connections. For details,
please see the "EPSON OPOS ADK User's Manual (Installer/ SetupPOS/
TMUSB)".

2.4 Using Extended Ports

EPSON OPOS ADK is able to support the use of RS-232C expansion cards with
genuine Windows RS-232C drivers. This allows the use of ports up to COM 10.
With genuine expansion LPT cards, it is also able to support the use of LPT
expansion ports up to LPT3. When using expansion cards, please follow the
card’s product manual to configure all settings.

When using extended ports, use the SetupPOS utility to set the maximum values
of the COM and LPT ports correctly.

3

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

2.5 Creating a LOG File
EPSON OPOS ADK contains tracing functions to support the creation of error
free programs. Tracing functions save information on the running of OPOS API in
a special file. If a problem occurs during the development of a program, this file
can be used to help troubleshoot the problem.

Below is an explanation of trace file usage.

[Setting Trace Functions]
1) Using the SetupPOS utility, enable the tracing functions. The following two
trace types are available.
Global trace
Private trace
Select either of the functions in accordance with the purpose.
2) Specify the desired trace log file name.

[Trace Modes]
The following three trace modes are available.
No Trace: Tracing functions are not performed.
Global Trace: Trace of all global OPOS API functions. Items set as Private
are ignored.
Private Trace: Trace of the device specified in [DeviceName]. All Global Trace
settings will be canceled. It is possible to specify a Private
Trace on multiple devices.

[Viewing the Trace Log File]
The Log file is set up in the following style:

*CO is registered
Property Reference: ObjectIiD[DeviceName].PropName:{Property value}
Property Settings: ObjectIiD[DeviceName].PropName={Property value}
Calling of a Method: >ObjectID[DeviceName].MethodName(Parameter list)
Completion of a Method:<ObjectiD[DeviceName].MethodName(Parameter list)
(This line becomes valid only when an address is passed to the parameter, and
after completion, it is possible to view the parameters themselves.)
Method Results:
<ObjectID[DeviceName].ResultCode:{ResultCode}
<ObjectID[DeviceName].ResultCodeExtended:{ResultCodeExtended}

4

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

*CCO is registered

Property Reference: TimeStump DeviceClass [DeviceName].PropName:
{Property value}
Property Settings: TimeStump DeviceClass [DeviceName].PropName

={Property value}
Calling of a Method: > TimeStump DeviceClass [DeviceName].
MethodName(Parameter list)
Completion of a Method: < TimeStump DeviceClass [DeviceName].
MethodName(Parameter list)
(This line becomes valid only when an address is passed to the parameter, and
after completion, it is possible to view the parameters themselves.)
Method Results: < TimeStump DeviceClass [DeviceName].
ResultCode:{ResultCode}
< TimeStump DeviceClass[DeviceName].
ResultCodeExtended:{ResultCodeExtended}

Below is an example of a trace file that has been created after tracing the actions
of a POS printer (CO registered).

>POSPrinter1[TM-T88IV].Open(“TM-T88IV")
<POSPrinterl[TM-T88IV].ResultCode:OPOS_SUCCESS
<POSPrinterl[TM-T88IV].ResultCodeExtended:0 (0x00000000)
POSPrinterl[TM-T88IV].ServiceObjectVersion:1013001 (0x000f7509)
POSPrinterl[TM-T88IV].ServiceObjectDescription:"\EPSON POSPrinter OPOS
Service Object Copyright (C) 2005-2011 Seiko Epson Corp.”
>POSPrinterl[TM-T88IV].Close()
<POSPrinterl[TM-T88IV].ResultCode:OPOS_SUCCESS
<POSPrinter1[TM-T88IV].ResultCodeExtended:0 (0x00000000)

Be aware that when using tracing functions, performance of OPOS slows in
comparison to when tracing is not performed. While developing, only enable the
tracing functions when required. At other times, disable the tracing function.

[Restriction of the Trace Log File]
The trace log file size can be up to 1 MB. When it exceeds the limit, the file name
is automatically changed and saved as (XXXOId.txt). However, it is possible to
maintain the file only up to 2 MB or less after this because of this repetition.
Please back up the file to an appropriate location when the message box appears
telling you the file is full.

5

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

[Making the Log File by Multiprocessing]
The log file may divide into the plural when OPOS is used by multiprocessing. At
this time, the number such as "1" or "2” is added at the end of the file name. Be
aware to the referred file when operating by multiprocessing. It is likely to become
similar when the application operates while executing SetupPOS.

2.6 Registry Import/Storing
When installing EPSON OPOS ADK on multiple machines, or when transferring
to a new machine, it is possible to copy the contents of the setting made in the
SetupPOS utility by using export and import functions.

[Storing Registry Information in a File]

After choosing “Save Registry...” from the SetupPOS utility’s tool menu, enter the
name of the file to be used to store the registry information. Be sure to give the
file a .REG extension. Several options are available for saving the registry, but
please select the “Save All” options. This file can also be put to efficient use when
other methods are used for saving or if the Installer is used in user-unique ways.

[Recording File Information in the System Registry]
Initialize Registry will overwrite the current OPOS registry without deleting the old
one. Devices not related to the exported devices will not be affected. If there is a
similar device to the one that has been exported, the former device’s information
will be overwritten. When using Initialize Registry, be sure to confirm that there
will be no conflicts with the current settings. (If a conflict occurs, a warning dialog
box will be displayed.)

Warnings:
It is not support with the registry created in before OPOS 2.80.

2.7 Logical Device Name
A Device Name or Logical Device Name should be specified in the DeviceName.

1) A Device Name is a name key for a device that is registered. (Ex.:TM-T88V)
It can be confirmed by the SetupPOS utility.

2) The Logical Device Name is a specific character string created in relation to
the device name. It can be set and correlated with the device name by the
SetupPOS utility.

“TM-T88V” <---> “OPOS.Ptr.1”
By using a Logical Device Name, a program can be made more flexible.

6

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

For example, if the Visual Basic code opens devices with the following
source,

Rc = OPOSPOSPrinterl.Open(“*OPOS.Ptr.1")
the Logical Device Names take the places of the actual device names as set
in the setup program.
“OPOS.Ptr.1" <---> “TM-T88IV”
In case the device is changed, this can be accomplished by just changing the
setup relations as the actual device can be selected and used freely without
changing the entire program’s source code.

7

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

2.8 ClaimDevice and ReleaseDevice methods

Version 3.00 Feb. 2019

By using the Claim (ClaimDevice method), the exclusive access right to a claimed

device can be acquired. By executing the Release (ReleaseDevice method), the
exclusive access right to a claimed device can be released. It is possible to claim

a device many times. However, even if the device is claimed many times just one

call of the ReleaseDevice method will release the exclusive access rights to the

device.

2.9 UPOS Reference
When using Visual Basic, please follow the conventions listed below.

Where the UPOS shows:

Syntax

The Visual Basic usage is:

Syntax

LONG CheckHealth(LONG Level);

CheckHealth(ByVal Level As Long)
Type Long

Below is list of the difference between various types in Visual C++ and Visual

Basic.

Basic
BOOL Boolean
BSTR String (ByVal)
BSTR * String
LONG Long (ByVal)
LONG * Long

8

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

Section 3. Usage

This section describes the procedures for developing in Visual Basic/Visual C++.

3.1 Using OPOS API
3.1.1 Using Visual Basic

There are several ways of using OPOS API in Visual Basic.

This manual describes one of the methods that OPOS API is used in the Visual

Basic step in which components are added by pasting control objects to a form.

1)

2)

3)

Please install EPSON OPOS ADK as outlined in the "EPSON OPOS ADK
User's Manual (Installer/ SetupPOS/ TMUSB)". Then set up each device
using the SetupPOS utility.

Microsoft Visual Basic 2010 or higher is necessary to utilize OPOS API.
Please confirm that this version is installed on the machine that is to be used.
After starting Microsoft Visual Basic, add the ActiveX controls to be used into
the project by using the Custom Controls option.

[Common CO Version1.14.1]

OPOS CashDrawer Control 1.14.1 . Control object that can utilize the
Cash Drawer API

OPOS POSPrinter Control 1.14.1 . Control object that can utilize the
POSPrinter API.

OPOS MICR Control 1.14.1 . Control object that can utilize the
MICR API.

OPOS CheckScanner Control 1.14.1 . Control object that can utilize the
CheckScanner API.

OPOS LineDisplay Control 1.14.1 . Control object that can utilize the
LineDisplay API

OPOS ElectronicJournal Control 1.14.1 . Control object that can utilize the

ElectronicJournal API

It is also possible to use other CCOs than those of CCO Versionl.14.1.
Users that want to use other CCO, should first register the CCOs and then
select the appropriate CCO by inserting the component.

9

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

4) After adding the necessary ActiveX controls into your project, the controls will
be available from the toolbox. The API functions supported by OPOS
become usable by choosing the control from the toolbox and placing them on
the Form of your project.

5) An OPOS application using various API functions is now ready to be created.

When you create multiple forms and set them up to access a single ADK object in
a Visual Basic project, the following problems occur when properties are
accessed or methods are called:

* The method or property accessed first does not return until all processing

has been completed. (The project hangs.)

* The Close() method causes a Visual Basic error when called.
Please make sure that all methods and properties accessed by one from are
completely finished before any other form accesses a method or property.

If you want to get an Event in the midst of a procedure, use DoEvents. For
example,for a cash drawer, which you programmed to execute
WaitforDrawerClose immediately after executing the OpenDrawer method, an
Event never occurs until control returns to the application. Putting a DoEvents
instruction between the OpenDrawer method and WaitforDrawerClose method
executes StatusUpdateEvent and enables you to get an Event.

3.1.2 Using Visual C++
There are several ways of using OPOS API in Visual C++, but this manual
describes the method in which OPOS API is used by creating dialog box type
applications in Visual C++.

1) Please install EPSON OPOS ADK as outlined in the "EPSON OPOS ADK
User's Manual (Installer/ SetupPOS/ TMUSB)". Then set up each device
using the SetupPOS utility.

2) Microsoft Visual C++ 2010 or higher is necessary to utilize OPOS API.
Please confirm that this version is installed on the machine that is to be used.

3) Start Microsoft Visual C++.

4) Choose “New” from the “File” menu, and then choose MFC AppWizard(exe)
from the “Project” tab. Enter the project name. (Example: test)

5) Instep 1 of MFC AppWizard, set the application type as “Dialog base” before
proceeding.

6) In step 2 of MFC AppWizard, specify “ActiveX controls” before proceeding.

7) In step 3 of MFC AppWizard, change the MFC library link to “Use static

10

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

8)

9)

10)

11)

12)

13)

14)

Version 3.00 Feb. 2019

library” before proceeding. (It is not necessary to make this change when the
MFC library is used as a share.)

In step 4 of MFC AppWizard, confirm the creation class and then close
AppWizard.

Display “Resource View” and select the main dialog (for example:
IDD_TEST_DIALOG).

By right-clicking the dialog a pop-up menu appears. Select insertion of
ActiveX controls, and select the control that you want to install. (Example:
EPSON OPOS LineDisplay ActiveX Control)

After installing the required devices, display the properties of the installed
controls and set the ID or confirm the default ID.

Start ClassWizard and display the member variable screen. Align the cursor
with the control ID for the installed device and select “Add variable”.

Enter the name of the variable (for example: m_Disp) and click “OK” to close
the ClassWizard. From now on, this member variable name is usable, and
the property method can be used. (For example: m_Disp.Open(“*Unit1”);)

To use an already defined constant in the source code, the previously installed

header file must be included. (For example: #include “oposdisp.h”)

3.1.3 Updating ActiveX Control

There are several ways of updating ActiveX control in Visual C++, but this manual

describes the method in which OPOS API is used by dialog box type applications

in Visual C++.

1)

2)

3)

4)
5)

Please install new version of EPSON OPOS ADK as outlined in the "EPSON
OPOS ADK User's Manual (Installer/ SetupPOS/ TMUSB)".

Start Microsoft Visual C++, and open project of application, which uses
EPSON OPOS ADK.

Delete old ActiveX control, and remove files that define old wrapper class
from the project. Record the file names and removed control ID. (Example:
default file name - coptr.h and coptr.cpp, default control ID -
IDC_POSPRINTER1)

Remove these files from hard drive, also.

Choose “Add to Project” from the “Project” menu, and then choose
“Components and Controls” menu, Select insertion of ActiveX controls from
the “Registered ActiveX Controls” folder. (Example: EPSON OPOS Line

Display ActiveX Control)
11

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

6) When select control, the dialog box appears. Make wrapper class to call
ActiveX control by dialog. Set the “Class Name” and “File Name” same as
removed variable's “Type” and removed file names. (Distinguish a small
letter and a capital letter.)

7) When add control, control appears in control box. Insert control on dialog.
And set the “Control ID” same as removed variable’'s “Control ID".
(Distinguish a small letter and a capital letter.)

8) Start ClassWizard and display the member variable screen. Align the cursor
with the control ID for the installed device. (Example: IDC_POSPRINTER1)

9) Click “Delete Variables” to delete variable corresponded the device, and
record variable’s “Type” and “Name”.

10) Click “Add Variable...” to add variable corresponded the device. Set member
variable’s type same as removed member variable's type. (Distinguish a
small letter and a capital letter.)

11) Display the “Message Maps” screen. Align the cursor with the Object ID for
the installed device. Select Message that you want remove and click “Delete
function”.

12) Click “Add function”. Set the function name same as removed function’s

name.

Notice:
After this process, two functions for event handling may be made. In that case,

remove function that is not necessary.

3.2 Using Constants
All the constants used in the programs found in this manual and UPOS are
defined in the .BAS files or .H files that are included in the EPSON OPOS ADK.
These constants are copied to the install directory when EPSON OPOS ADK is
installed.
This software supplies the following two types of .BAS files. Visual Basic users
should make use of these.
OPOS.BAS ... Constants defined in the OPOS API.
OPOSEPSN.BAS Original Epson constants.
Before creating a program, please be sure to include these .BAS files into your
project.

This software supplies the following 21 types .H files. Visual C++ users should

12

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

make use of these.

Version 3.00 Feb. 2019

OPOSH ... Constants used with OPOS in general
OPOSSTAT.H ... Constants used with OPOS in general
OPOSCASH.H ... Constants used with OPOS CashDrawer
OPOSDISP.H ... Constants used with OPOS LineDisplay
OPOSPTR.H ... Constants used with OPOS POSPrinter
OPOSTOT.H ... Constants used with OPOS HardTotals
OPOSMSR.H ... Constants used with OPOS MSR

OPOSMICR.H ... Constants used with OPOS MICR

OPOSCSCN.H ... Constants used with OPOS CheckScanner
OPOSLOCK.H ... Constants used with OPOS Keylock

OPOSEJH ... Constants used with OPOS ElectronicJournal
EPSONH ... Original EPSON constants used in general
EPSNCASH.H ... Original EPSON constants used with CashDrawer
EPSNDISP.H ... Original EPSON constants used with LineDisplay
EPSNPTR.H ... Original EPSON constants used with POSPrinter
EPSNTOT.H ... Original EPSON constants used with HardTotals
EPSNMICR.H ... Original EPSON constants used with MICR
EPSNMSR.H ... Original EPSON constants used with MSR
EPSNCSCAN.H Original EPSON constants used with CheckScanner
EPSNLOCK.H ... Original EPSON constants used with Keylock
EPSNEJH ... Original EPSON constants used with ElectronicJournal

3.3 API Function Comparison/Pasting

All the usable methods and properties available in the OPOS can be referenced

in UPOS, and can also be viewed using the Visual Basic Object Browser. To do

this, choose the control module of the device you want to view with the Object

Browser. A list of the methods and properties of the device will appear. Please

select the item you want to view from this list. An outline of the method or

property that you chose along with possible parameters
Paste command, codes can be added to the procedure.

13

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

will be shown. Using the

Version 3.00 Feb. 2019

Section 4. OPOS API Programming

This section outlines important points of OPOS API programming and contains explanation
of the shared functions not described in UPOS.

4.1 Things to Consider when Programming
® This section contains a summary explanation of programming. For space
and convenience, some points on error management have been omitted.
Errors that occur when running API's can be found as needed in other
sections throughout this manual. And also refer to details of error specified in
the “Device Class Specific Programming” section.

® The Visual Basic programming samples may include hard returns in the code
due to manual space limitations. Visual Basic code must include a character

to signal a hard return to function properly.

4.2 Code Explanations
Codes used in programming POS applications are listed below with their hex

equivalents.
EOT &HO04
ENQ &HO05
LF &HOA
CLR &HOC
CR &HOD
DLE &H10
CAN &H18
ESC &H1B
GS &H1D
us &H1F

14

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

4.3 Coding Samples
Several coding samples for Visual Basic and Visual C++ are introduced in the
following. For the Visual Basic sample coding in the device class specific
application development guide, please refer to these samples.

4.3.1 Judging Capability
The following is a coding example for judging “availability of journal functions” in
the POSprinter.

<< Visual Basic >>
If OPOSPOSPrinterl.CapJrnPresent = True Then
'Journal functions are available
Else
'Journal functions are not available
End If

<< Visual C++ >>
if (m_Ptrl.GetCapJdrnPresent())

{
/I Journal functions are available
}
else
{
/I Journal functions are not available
}

15

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

4.3.2 Retrieving Property Information
The following is a coding example for retrieving a list of the character sets of the
POS printer.

<< Visual Basic >>
Dim CSList As String
CSList = OPOSPOSPrinterl.CharacterSetList

<< Visual C++ >>
CString cslList;
csList = m_Ptrl.GetCharacterSetList();

4.3.3 Using Method Event
The following is a coding example for executing asynchronous printing on the
POS printer and confirming that the printing has been completed. This example
includes processing when printing finishes and in the event of the occurrence of
an error.

[Visual BASIC event processing]

By placing a device’s object on a form, events that can be used by the object are
pre-set in the application’s code. Please describe what to do when a given event
occurs.

[Visual C++ Adding event handler]

1. Start ClassWizard and display the message map screen.

2. Choose CO in “Object ID".

3. To add the required event handlers, select these from the Event list in
“Messages”.

<< Visual Basic >>
[Main Program]

Global PrintID1 As Long
Global PrintID2 As Long
OPOSPOSPrinterl.AsyncMode = True
OPOSPOSPrinterl.PrintNormal PTR_S_JOURNAL, “Print Data” + Chr(&HOD)
+ Chr(&HOA)
If OPOSPOSPrinterl.ResultCode = OPOS_SUCCESS Then
'Data was set successfully.

16

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

PrintiD1 = OPOSPOSPrinterl.OutputiD
Elself OPOSPOSPrinterl.ResultCode = OPOS_E_ILLEGAL Then
"The station does not exist.
Else
'Other error.
End If
While PrintID2 <> PrintiD1
"Wait for print success
Wend
'Data was printed successfully.

[Event Program]
Private Sub OPOSPOSPrinterl_OutputCompleteEvent(ByVal OutputlD As
Long)
PrintID2 = OutputID
End Sub

Private Sub OPOSPOSPrinterl_ErrorEvent(ByVal ResultCode As Long,
ByVal ResultCodeExtended As Long,
ByVal ErrorLocus As Long,
pErrorResponse As Long)
'ResultCode is obtained and the error can be dealt with.
'Errors such as OPOS_E_TIMEOUT, OPOS_E_BUSY,
'and OPOS_E_OFFLINE are possible results.
If ResultCode = OPOS_E_EXTENDED Then
If ResultCodeExtended = OPOS_EPTR_COVER_OPEN Then
'Cover open.
Elself ResultCodeExtended = OPOS_EPTR_JRN_EMPTY Then
'Journal paper out.
End If
End If
pErrorResponse = OPOS_ER_RETRY
"When the program should try again
pErrorResponse = OPOS_ER_CLEAR
"When the program should clear the data

End Sub

17

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

<< Visual C++ >>

[Main Program]
(Global)
long IPrintID1;
long IPrintID2;

(Main Program)
long Irc;

m_Ptrl.SetAsyncMode(TRUE);
m_Ptrl.PrintNormal(PTR_S_JOURNAL, “Print Data\n”);
if ((Irc = m_Ptr1.GetResultCode()) == OPOS_SUCCESYS)

{
/I Data was set successfully.
IPrintID1 = m_Ptrl.GetOutputID();
}
else if (Irc == OPOS_E_ILLEGAL)
{
/I The station does not exist.
}
else
{
[/l Other error.
}

while(IPrintID2 != IPrintID1){
/I Wait for print success

}

// Data was printed successfully.

[Event Program]

void (Dialog Class Name)::OnOutputCompleteEventPOSPrinter1(long OutputiD)

{
IPrintID2 = OutputlD;

void (Dialog Class Name)::OnErrorEventPOSPrinterl(long ResultCode,
18

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

long ResultCodeExtended,

long ErrorLocus,

long FAR* pErrorResponse)
/I ResultCode is obtained and the error can be dealt with.
/I Errors such as OPOS_E_TIMEOUT, OPOS_E_BUSY,
/I and OPOS_E_OFFLINE are possible results.

{
if (ResultCode == OPOS_E_EXTENDED)
{
if (ResultCodeExtended == OPOS_EPTR_COVER_OPEN)
{
/I Cover open.
}
else if (ResultCodeExtended == OPOS_EPTR_JRN_EMPTY)
{
/[Journal paper out.
}
}
*pErrorResponse = OPOS_ER_RETRY; // When the program should
try again
*pErrorResponse = OPOS_ER_CLEAR; // When the program should

clear the data

}

19

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

Section 5. Class Specific Information

Special manuals containing class specific information and description of special
programming methods have been prepared for the various device classes. Please refer to
the manual(s) for the device(s) to be used. It is recommended to do this while also
referring to the device’s product manual.

20

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

Section 6. Error Information

The methods and properties common for all the devices return the same errors. The
following sections explain the errors common for the methods and properties.

6.1 When Executing Common Properties

The following table lists the ResultCode and ResultCodeExtended when executing the
Common properties.

Property name ResultCode ResultCodeExtended Meaning
AutoDisable OPOS_SUCCESS 0 Refer to UPOS Specifications
OPOS E _CLOSED 0 Refer to UPOS Specifications.
BinaryConversion | OPOS SUCCESS 0 Refer to UPOS Specifications
OPOS E CLOSED 0 Refer to UPOS Specifications.
OPOS_E_ILLEGAL OPOS_EX_BADPROPVAL [Set value is incorrect.
DataEvent OPOS SUCCESS 0 Refer to UPOS Specifications
Enabled OPOS E CLOSED 0 Refer to UPOS Specifications.
OPOS_E_ILLEGAL 0 Refer to UPOS Specifications.
OPOS_ELOCK_KBHOOKS | It failed to buffering of keylock data.
TART
DeviceEnabled OPOS_SUCCESS 0 Refer to UPOS Specifications.
OPOS E CLOSED 0 Refer to UPOS Specifications.
OPOS E NOTCALIMED |0 Refer to UPOS Specifications.
OPOS E FAILURE 0 Refer to UPOS Specifications.
FreezeEvent OPOS_SUCCESS 0 Refer to UPOS Specifications.
OPOS E CLOSED 0 Refer to UPOS Specifications.
OPOS E ILLEGAL 0 Refer to UPOS Specifications.
PowerNotify OPOS_SUCCESS 0 Refer to UPOS Specifications.
OPOS E CLOSED 0 Refer to UPOS Specifications.
OPOS_E_ILLEGAL 0 Refer to UPOS Specifications.
OPOS EX INCAPABLE Function cannot be used.
OPOS EX BADPROPVAL [Setvalue is incorrect.

21

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

6.2 When Executing Common Methods

The following table lists the ResultCode

Common methods.

and ResultCodeExtended when executing the

Method name ResultCode ResultCodeExtended Meaning
Open OPOS_SUCCESS 0 Refer to UPOS Specifications.
OPOS_E_ILLEGAL 0 Already open.
OPOS EX BADCO The interface of the CO is illegal.
OPOS _EX MICRMODE The port is locked by the other device.
OPOS_EX_BADPORT Registry information about
communication port is illegal.
OPOS_EX_REOPEN Already open.
OPOS EX BADINF INF file version is illegal.
OPOS_EX_BADDISPRANGE | DispatchRange is illegal.
OPOS_EX_BADPEEKRANG | PeekRange is illegal.
E
OPOS EMSR FAILURE Initialization failed.
OPOS_ELOCK_KBHOOKOP | Initialization failed.
EN
OPOS_EMSR_KBHOOKOPE
N
OPOS E CLOSED 0 Refer to UPOS Specifications.
(OPOS_E_NOSERVICE)
OPOS_E_CLOSED 0 Refer to UPOS Specifications.
(OPOS_E_NOEXIST)
OPOS E CLOSED 0 Refer to UPOS Specifications.
(OPOS_E_ILLEGAL)
OPOS_E_CLOSED 0 Refer to UPOS Specifications.
(OPOS_E_FAILURE)
OPOS_E_EXISTS The file or registry key does not exist.
Close OPOS_E_CLOSED Refer to UPOS Specifications.
(OPOS_SUCCESS)
ClaimDevice * | OPOS_SUCCESS 0 Refer to UPOS Specifications.
OPOS E CLOSED 0 Refer to UPOS Specifications.
OPOS E TIMEOUT 0 Refer to UPOS Specifications.

I For ClaimDevice, the error information differs by models.

22

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

Method name

ResultCode

ResultCodeExtended

Meaning

(ClaimDevice) *

OPOS_E_ILLEGAL

OPOS_EX BADPARAM + 1

The 1th parameter is illegal.

OPOS_EX_BADPORT

Registry information about

communication port is illegal.

OPOS_EX_DEVBUSY

The outputting cannot be executed
because the communication port state
is BUSY.

OPOS_EX_PORTUSED

The Communication port is used by

other application.

OPOS_EX_TIMEOUT

The operation cannot be completed

within the timeout period.

OPOS_EMSR_KBHOOKST
ART

Failed to buffer the MSR data of the

hook driver.

OPOS_EX_NOINPUT

No data is received.

OPOS_EX_MICRMODE

The port is locked by the other device.

OPOS_EX_BADDEVICE

The connected device is illegal.

OPOS_EPTR_MECHANICA
L

A mechanical error occurred.

OPOS_EPTR_CUTTER

A cutter error occurred.

OPOS_EPTR_UNRECOVE
RABLE

An irrecoverable error occurred.

OPOS_EPTR_AUTORECO
VERABLE

An overheat error occurred.

An auto recoverable error occurred.

OPOS_EPTR_JRN_EMPTY

Journal station is out of paper.

OPOS _EPTR_REC_EMPTY

Receipt station is out of paper.

OPOS_EPTR_COVER_OPE
N

Cover is open.

OPOS_EPTR_REC_CARTR
IDGE_REMOVED

No ink cartridge.

OPOS_EPTR_REC_CARTR
IDGE_EMPTY

The ink cartridge is almost empty.

" For ClaimDevice, the error information differs by models.

23

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

Method name

ResultCode

ResultCodeExtended

Meaning

(ClaimDevice) *

(OPOS_E_ILLEGAL)

OPOS_EPTR_REC_HEAD_
CLEANING

Head cleaning in execution.

OPOS_EPTR_SLP_CARTRI
DGE_REMOVED

No ink cartridge.

OPOS_EPTR_SLP_CARTRI
DGE_EMPTY

The ink cartridge is almost empty.

OPOS_EPTR_SLP_HEAD_
CLEANING

Head cleaning in execution.

OPOS_EPTR_LABEL_JAM

A label paper jam occurred within the

peeler system.

OPOS_EPTR_LABEL_REM
OVAL

Could not carry out the output
processing since the device is at the
waiting state of the label paper to be

removed.

OPOS_EPTR_BUTTON_OP
ERATION

Could not carry out the output
processing since the device is at the

push-waiting state of the button.

OPOS_E_FAILURE

0

Refer to UPOS Specifications.

OPOS_EX_MICRMODE

The port is locked by the other device.

OPOS_EPTR_UNRECOVE
RABLE

An irrecoverable error occurred.

OPOS_EPTR_CUTTER

A cutter error occurred.

OPOS_EPTR_MECHANICA
L

A mechanical error occurred.

OPOS_EPTR_OVERHEAT

An overheat error occurred.

OPOS E_TIMEOUT

0

Refer to UPOS Specifications.

OPOS_E_OFFLINE

0

Refer to UPOS Specifications.

OPOS_EPTR_COVEROPE
N

Cover is open.

OPOS_EPTR JRN EMPTY

Journal station is out of paper.

OPOS _EPTR REC EMPTY

Receipt station is out of paper.

! For ClaimDevice, the error information differs by models.

24

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

Method name

ReleaseDevice

CheckHealth

ResultCode ResultCodeExtended Meaning
OPOS_SUCCESS 0 Refer to UPOS Specifications.
OPOS E CLOSED 0 Refer to UPOS Specifications.
OPOS_E_ILLEGAL OPOS_EX NOTCLAIMED The device was released without
claiming.
OPOS_SUCCESS 0 Refer to UPOS Specifications.
OPOS_E_CLOSED 0 Refer to UPOS Specifications.
OPOS_E_NOTCLAIMED |0 Refer to UPOS Specifications.
OPOS_E_DISABLED 0 Refer to UPOS Specifications.
OPOS_E_CLAIMED 0 Refer to UPOS Specifications.

OPOS_E_ILLEGAL

OPOS_EX_BADPARAM+1

The 1th parameter is illegal.

OPOS_EX_DEVBUSY

The outputting cannot be executed
because the communication port state
is BUSY.

OPOS_EX_TIMEOUT

The operation cannot be completed

within the timeout period.

OPOS_EX_NOTSUPPORTE
D

Not supported.

OPOS_EX_MICRMODE

The port is locked by the other device.

OPOS_EX_INVALIDMODE

The state is invalid mode.

OPOS_EMSR_KBHOOKST
ART

Failed to buffer the MSR data of the

hook driver.

OPOS_E_OFFLINE

0

Refer to UPOS Specifications.

OPOS_EPTR_COVER_OPE
N

Cover is open.

OPOS_EPTR_JRN_EMPTY

Journal station is out of paper.

OPOS _EPTR_REC_EMPTY

Receipt station is out of paper.

OPOS_EPTR_REMOVE_
BUTTON

Could not carry out the output
processing since the device is at the
waiting state of the label paper to be
removed and the push-waiting state of

the button.

25

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

Method name

ResultCode

ResultCodeExtended

Meaning

(CheckHealth)

OPOS_E_FAILURE

OPOS_EX_INVALIDMODE

The state is invalid mode.

OPOS_EX_DEVBUSY

The outputting cannot be executed
because the communication port state
is BUSY.

OPOS_EX_TIMEOUT

The operation cannot be completed

within the timeout period.

OPOS_EX_NOINPUT

No data is received.

OPOS_EX_MICRMODE

The port is locked by the other device.

OPOS_EPTR_UNRECOVER
ABLE

An irrecoverable error occurred.

OPOS_EPTR_AUTORECOV
ERABLE

An overheat error occurred.

An auto recoverable error occurred.

OPOS_EPTR_CUTTER

A cutter error occurred.

OPOS_EPTR_MECHANICAL

A mechanical error occurred.

OPOS_EPTR_LABEL_JAM

A label paper jam occurred within the

peeler system.

OPOS_EPTR_OVERHEAT

An overheat error occurred.

OPOS_EX_UNAUTHORIZED

There was insufficient permission to

access for processing.

OPOS_E_EXTENDED

OPOS_EPTR_COVER_OPE
N

Cover is open.

OPOS EPTR JRN EMPTY

Journal station is out of paper.

OPOS _EPTR REC EMPTY

Receipt station is out of paper.

OPOS EPTR SLP EMPTY

Slip station is out of paper.

OPOS_EPTR_REC_CARTRI
DGE_REMOVED

No ink cartridge.

OPOS_EPTR_REC_CARTRI
DGE_EMPTY

The ink cartridge is almost empty.

OPOS_EPTR_REC_HEAD_C
LEANING

Head cleaning in execution.

OPOS_EPTR_SLP_CARTRI
DGE_EMPTY

The ink cartridge is almost empty.

26

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

Method name

ResultCode

ResultCodeExtended

Meaning

(CheckHealth) (OPOS_E_EXTENDED) OPOS_EPTR_SLP_HEAD_ | Head cleaning in execution.
CLEANING
OPOS_EPTR_LABEL_REM | Could not carry out the output
OVAL processing since the device is at the
waiting state of the label paper to be
removed.
OPOS_EPTR_BUTTON_OP | Could not carry out the output
ERATION processing since the device is at the
push-waiting state of the button.
OPOS_EEJ NOT_ENOUGH | There is not enough space in the
SPACE Medium to continue this operation.
OPOS E BUSY Refer to UPOS Specifications.
OPOS E NOHARDWAR | O Refer to UPOS Specifications.
E
Clearlnput OPOS SUCCESS 0 Refer to UPOS Specifications.
OPOS E CLOSED 0 Refer to UPOS Specifications.
OPOS E NOTCLAIMED |0 Refer to UPOS Specifications.
OPOS_E_CLAIMED 0 Refer to UPOS Specifications.
ClearOutput OPOS_SUCCESS 0 Refer to UPOS Specifications.
OPOS E CLOSED 0 Refer to UPOS Specifications.
OPOS E NOTCLAIMED |0 Refer to UPOS Specifications.
OPOS_E_CLAIMED 0 Refer to UPOS Specifications.
DirectlO OPOS SUCCESS 0 Refer to UPOS Specifications.
OPOS E CLOSED 0 Refer to UPOS Specifications.
OPOS E DISABLED 0 Refer to UPOS Specifications.
OPOS_E _NOTCLAIMED |0 Refer to UPOS Specifications.
OPOS E_CLAIMED 0 Refer to UPOS Specifications.
OPOS _E _ILLEGAL 0 Refer to UPOS Specifications.

OPOS_EX_DEVBUSY

The outputting cannot be executed
because the communication port state
is BUSY.

OPOS_EX_INVALIDMODE

The state is invalid mode.

OPOS_EX_NOTSUPPORTE
D

Not supported.

OPOS_EX_PORTUSED

The Communication port is used by

other application.

OPOS_EX_BADPORT

Registry information about
communication port is illegal.

27

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

Method name

ResultCode

ResultCodeExtended

Meaning

(DirectlO) (OPOS_E_ILLEGAL) OPOS_EX_TIMEOUT The operation cannot be completed
within the timeout period.
OPOS EX INCAPABLE No function.
OPOS EX MICRMODE The port is locked by the other device.
OPOS EX BADPARAM+1 The 1th parameter is illegal.
OPOS EX BADPARAM+2 The 2th parameter is illegal.

OPOS_E_NOHARDWAR The device is power OFF or

E ° unconnected.

OPOS_E_FAILURE OPOS_EX_DEVBUSY The outputting cannot be executed
because the communication port state
is BUSY.

OPOS_EX_TIMEOUT The operation cannot be completed
within the timeout period.

OPOS_E_EXTENDED OPOS_EDISP TOOBIG The size is too big.

OPOS_EDISP_BADFORMA | The format of the specified file is
T illegal.

ResetStatistics OPOS_SUCCESS 0 Refer to UPOS Specifications.
OPOS_E_CLOSED 0 Refer to UPOS Specifications.
OPOS_E_DISABLED 0 Refer to UPOS Specifications.
OPOS_E _NOTCLAIMED |0 Refer to UPOS Specifications.
OPOS_E_ILLEGAL OPOS EX BADPARAM+1 The 1th parameter is illegal.

OPOS EX INCAPABLE No function.

OPOS_E_EXTENDED OPOS_ESTATS_ERROR The specified statistics name is
un-updatable or un-resettable.

RetrieveStatistics | OPOS _SUCCESS Refer to UPOS Specifications.

OPOS_E_CLOSED

Refer to UPOS Specifications.

OPOS_E _DISABLED

Refer to UPOS Specifications.

OPOS_E _NOTCLAIMED

0
0
0
0

Refer to UPOS Specifications.

OPOS_E_ILLEGAL

OPOS_EX_ BADPARAM+1

The 1th parameter is illegal.

OPOS _EX INCAPABLE

No function.

28

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

Method name

ResultCode

ResultCodeExtended

Meaning

UpdateStatistics

OPOS_SUCCESS

Refer to UPOS Specifications.

OPOS E CLOSED

Refer to UPOS Specifications.

OPOS_E_DISABLED

Refer to UPOS Specifications.

OPOS_E_NOTCLAIMED

0
0
0
0

Refer to UPOS Specifications.

OPOS_E_ILLEGAL

OPOS_EX_ BADPARAM+1

The 1th parameter is illegal.

OPOS_EX_INCAPABLE

No function.

OPOS_E_EXTENDED

OPOS_ESTATS_ERROR

The specified statistics

un-updatable or un-resettable.

name

is

CompareFirmware

Version

OPOS_SUCCESS 0 Refer to UPOS Specifications.
OPOS_E_CLOSED 0 Refer to UPOS Specifications.
OPOS_E_DISABLED 0 Refer to UPOS Specifications.
OPOS_E_NOTCLAIMED |0 Refer to UPOS Specifications.

OPOS_E_ILLEGAL

OPOS_EX_INCAPABLE

No function.

UpdateFirmware

OPOS_SUCCESS 0 Refer to UPOS Specifications.
OPOS_E_CLOSED 0 Refer to UPOS Specifications.
OPOS_E_DISABLED 0 Refer to UPOS Specifications.
OPOS_E_NOTCLAIMED | O Refer to UPOS Specifications.

OPOE_E_ILLEGAL

OPOS_EX_INCAPABLE

No function.

ClearlnputProperti | OPOS_SUCCESS 0 Refer to UPOS Specifications.
es
OPOS_E_CLOSED 0 Refer to UPOS Specifications.
OPOS_E_NOTCLAIMED | O Refer to UPOS Specifications.
OPOS_E_CLAIMED 0 Refer to UPOS Specifications.
29

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

Section 7. Warnings

7.1 Cautions for Programming

After a method has been called and until it is returned, the calling thread is
placed in a hanged (frozen) state.

For example, when there is only one form in the program and a method is
called, the program is completely frozen until the method is returned. Some
methods (ClaimDevice, WaitForDrawerClose, etc.) take a long time to
complete, so please arrange the program to plan on this.

This problem can be avoided if the program calls methods from another
form.

The errors that may be returned from the Open or ClaimDevice methods may
vary depending on the device being used. This is partly dependent on the
port connection that the method is performed. Different types of devices by
different makers will return different values. A device that is actually
connected to a port being addressed by the Open method will return errors
related to the Open method. Devices being connected by the ClaimDevice
method will return errors related to the ClaimDevice method. For details on
this, please refer to the explanation of errors in the “Class Specific
Programming” section.

It is illegal to use DoEvents management to perform event management. If
DoEvents management is used, an application error will appear, and the
program may stop responding and the message calling for forced shutdown
may appeatr.

Depending on the device being used, it is possible to cause an error after the
Open method is executed if the power is turned OFF/ON. Please not to turn
the power OFF/ON after the Open method has been called. If power is
turned OFF/ON, please execute the Close method and then execute the
Open method again.

30

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

7.2 Precautions for VC++

7.2.1 LineDisplay
When using LineDisplay control in coexistence with MFC, the two method names
“CreateWindow” and “DestroyWindow” will duplicate already existing function
names and an error will occur at the time of building. To avoid this, it is necessary
to change the function names in the wrapper class (Codisp.ccp Codisp.h). The
following sample shows how to change these.

Points to change in Codisp.h
long CreateWindowQ(long ViewportRow, long ViewportColumn,
long ViewportHeight,long ViewportWidth,
long WindowHeight, long WindowWidth);
long DestroyWindowQ();
Points to change in Codisp.cpp
long CCodisp::CreateWindow0(long ViewportRow, long ViewportColumn,

long ViewportHeight, long ViewportWidth,
long WindowHeight, long WindowWidth)

31

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

Version 3.00 Feb. 2019

7.2.2 Cautions when Using the Sample Programs
Each of the sample programs provided with OPOS ADK creates with the device
name as “Unit 1". To operate the sample program, please specify the Logical
Device Name as “Unit 1”.

To keep the capacity required for the program as small as possible, the
dynamic-link library feature is set to use. In order to run the program, Visual C++

DLL files (MFC42D.DLL, MFCO42D.DLL, MSVCR42D.DLL) are required.

7.2.3 Cautions for Use of DirectlO
The third argument of DirectlO is the pointer to BSTR.

long DirectlO(long Command, long* pData, BSTR* pString)

The Service Object treats the contents of this pointer as Unicode(WideChar).
Accordingly, the argument pString must be a pointer to BSTR type Unicode data.

BSTR type Unicode data can be created using methods like the following.

BSTR pString = SysAllocString(L*abcd”);

CString m_strString = “abcd”;
BSTR pString = m_strString.AllocSysString();

LPCSTR IpszA = “abcd”;

int nLen = MultiByteToWideChar(CP_ACP, 0,lpszA, 4, NULL, NULL);
BSTR pString = ::SysAllocStringLen(NULL, nLen);
MultiByteToWideChar(CP_ACP, 0, IpszA, 4, pString, nLen);

When building, use the _UNICODE symbol and use the following types.

TCHAR, LPTSTR, LPCTSTR, CString

Please use _T macros for literal characters.

32

APPLICATION DEVELOPMENT GUIDE
GENERAL DEVELOPMENT

	Section 1. Introduction
	Section 2. General Development
	2.1 Who Should Read This Manual
	2.2 OPOS Software System Hierarchy
	2.2.1 Control Object
	2.2.2 Service Object

	2.3 Checking Connections of Devices
	2.4 Using Extended Ports
	2.5 Creating a LOG File
	2.6 Registry Import/Storing
	2.7 Logical Device Name
	2.8 ClaimDevice and ReleaseDevice methods
	2.9 UPOS Reference

	Section 3. Usage
	3.1 Using OPOS API
	3.1.1 Using Visual Basic
	3.1.2 Using Visual C++
	3.1.3 Updating ActiveX Control

	3.2 Using Constants
	3.3 API Function Comparison/Pasting

	Section 4. OPOS API Programming
	4.1 Things to Consider when Programming
	4.2 Code Explanations
	4.3 Coding Samples
	4.3.1 Judging Capability
	4.3.2 Retrieving Property Information
	4.3.3 Using Method Event

	Section 5. Class Specific Information
	Section 6. Error Information
	6.1 When Executing Common Properties
	6.2 When Executing Common Methods

	Section 7. Warnings
	7.1 Cautions for Programming
	7.2 Precautions for VC++
	7.2.1 LineDisplay
	7.2.2 Cautions when Using the Sample Programs
	7.2.3 Cautions for Use of DirectIO

